Skip to main content

Zero-Bias Transport Anomaly in Metallic Nanobridges

Magnetic field dependence and universal conductance fluctuations

  • Chapter
  • 289 Accesses

Part of the book series: NATO Science Series ((NAII,volume 50))

Abstract

It is well known that in bulk metals and semiconductors with diffusive transport the electron-electron interaction causes an anomaly in the electronic density of states (DOS) at the Fermi level. As explained by Aronov and Al’tshuler (A-A) in the 1980s [1, 2], this correction is induced by the long-range, retarded character of the dynamically screened Coulomb interaction in a diffusive system. It has been observed in thermodynamic equilibrium by tunneling spectroscopy on disordered metals [3, 4]. In the present article we address the question how this anomaly is modified in a nanoscopic sample or metal bridge whose size L is smaller than the dephasing length L ϕ (and all inelastic relaxation lengths) and which is driven out of equilibrium by a finite bias voltage U applied between the ends of the sample. Since in such a situation energy relaxation is negligible for electrons traversing the system, no local equilibrium is reached at any point in the bridge. Rather, the electron liquids penetrating from the left and right leads into the bridge remain at their respective electrochemical potentials μ L and μ R . Consequently, the quasiparticle distribution function is a linear superposition of Fermi distributions in the left and right leads and displays a doublestep form (see Fig. 1). This fact has been claimed theoretically [5] and has recently been observed experimentally by tunneling spectroscopy [6] (where in addition the steps were rounded due to interactions in long wires). It should be distinguished from the hot-electron regime [7], where local thermalization in a current-carrying system occurs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review, see B. L. Al’tshuler and A. G. Aronov in Electron-Electron Interactions in Disordered Systems (North-Holland, Amsterdam, 1985).

    Google Scholar 

  2. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  ADS  Google Scholar 

  3. Y. Imry and Z. Ovadyahu, Phys. Rev. Lett. 49, 841 (1982).

    Article  ADS  Google Scholar 

  4. G. Hertel, D. J. Bishop, E. G. Spencer, J. M. Rowell, and R. C. Dynes, Phys. Rev. Lett. 50, 743 (1983).

    Article  ADS  Google Scholar 

  5. I.O. Kulik and I.K. Yanson, Sov. J. Low. Temp. Phys. 4, 596 (1978).

    Google Scholar 

  6. H. Pothier, S. Guéron, N.O. Birge, D. Estéve, and M.H. Devoret, Phys. Rev. Lett. 79, 3490 (1997).

    Article  ADS  Google Scholar 

  7. V. I. Kozub and A. M. Rudin, Phys. Rev. B 52, 7853 (1995).

    Article  ADS  Google Scholar 

  8. H. B. Weber, R. Häussier, H. v. Löhneysen, and J. Kroha, Phys. Rev. B 63, 165426 (2001).

    Article  ADS  Google Scholar 

  9. Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).

    Article  ADS  Google Scholar 

  10. S. Chakravarty and A. Schmid, Phys. Rep. 140, 193 (1988).

    Article  ADS  Google Scholar 

  11. For a comprehensive overview and references, see D. L. Cox and A. Zawadowski, Adv. Phys. 47, 599 (1998).

    Article  Google Scholar 

  12. D.C. Ralph, A.W.W. Ludwig, J. v. Delft, and R.A. Buhrman, Phys. Rev. Lett. 72, 1064 (1994); D.C. Ralph and R.A. Buhrman, Phys. Rev. B 51, 3554 (1995).

    Article  ADS  Google Scholar 

  13. M.H. Hettler, J. Kroha, and S. Hershfield, Phys. Rev. Lett. 73, 1967 (1994).

    Article  ADS  Google Scholar 

  14. Y. Nazarov, Sov. Phys. JETP 68, 561 (1989).

    Google Scholar 

  15. Magnetic field dependence does occur in the presence of strong spin flip (magnetic impurity or spin orbit) scattering or when in the case of strong disorder the weak localization (Cooperon) correction must be taken into account in the impurity scattering vertex. Both effects are not expected to occur in our samples.

    Google Scholar 

  16. Y. Meir, Y. Gefen, and S. O. Entin-Wohlman, Phys. Rev. Lett. 63, 768 (1989).

    ADS  Google Scholar 

  17. P.A. Lee and A.D. Stone, Phys. Rev. Lett. 55, 1622 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weber, H.B., Häussler, R., v. Löhneysen, H., Kroha, J. (2001). Zero-Bias Transport Anomaly in Metallic Nanobridges. In: Chandrasekhar, V., Van Haesendonck, C., Zawadowski, A. (eds) Kondo Effect and Dephasing in Low-Dimensional Metallic Systems. NATO Science Series, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0427-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0427-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0401-8

  • Online ISBN: 978-94-010-0427-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics