The Kondo Effect in a Single-Electron Transistor

  • D. Goldhaber-Gordon
  • J. Göres
  • Hadas Shtrikman
  • D. Mahalu
  • U. Meirav
  • M. A. Kastner
Part of the NATO Science Series book series (NAII, volume 50)

Abstract

In our single electron transistor (SET), a droplet of about 50 electrons is separated from two conducting leads by tunnel barriers. A set of electrodes (Fig. 1(a)), on the surface of a GaAs/AlGaAs heterostructure which contains a two-dimensional electron gas (2DEG), is used to confine the electrons and create the tunnel barriers. The 2DEG is depleted beneath the electrodes, and the narrow constrictions between electrodes form the tunnel barriers. To make our SETs smaller than earlier ones, we have fabricated shallower 2DEG heterostructures [1] as well as finer metallic gate patterns by electron-beam lithography. The smaller size of the SETs is critical to our observation of the Kondo effect (dimensions are given in Fig. 1(a)). For details of device fabrication see Ref. [2].

Keywords

GaAs Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hadas Shtrikman, D. Goldhaber-Gordon, and U. Meirav (unpublished).Google Scholar
  2. [2]
    D. Goldhaber-Gordon et al., Nature 391, 156 (1998).ADSCrossRefGoogle Scholar
  3. [3]
    J. Kondo, in Solid State Physics, edited by H. Ehrenreich and D. Turnbull (Academic Press, New York, 1964), Vol. 23, p. 183.Google Scholar
  4. [4]
    T. A. Costi and A. C. Hewson, J. Phys.: Cond. Mat. 6, 2519 (1994).ADSCrossRefGoogle Scholar
  5. [5]
    C. M. Varma, Rev. Mod. Phys. 48, 219 (1976).ADSCrossRefGoogle Scholar
  6. [6]
    N. S. Wingreen and Y. Meir, Phys. Rev. B 49, 11040 (1994).ADSCrossRefGoogle Scholar
  7. [7]
    S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, Science 281, 540 (1998).ADSCrossRefGoogle Scholar
  8. [8]
    J. Schmid, J. Weis, K. Eberl, and K. v. Klitzing, Physica B 256-258, 182 (1998).ADSCrossRefGoogle Scholar
  9. [9]
    F. Simmel, R. H. Blick, J. P. Kotthaus, W. Wegscheider, and M. Bichler, Phys. Rev. Lett. 83, 804 (1999).ADSCrossRefGoogle Scholar
  10. [10]
    S. Sasaki, S. De Franceschi, J. M. Elzerman, W. G. van der Wiel, M. Eto, S. Tarucha, and L. P. Kouwenhoven, Nature 405, 764 (2000).ADSCrossRefGoogle Scholar
  11. [11]
    J. Nygard, D. H. Cobden, and P. E. Lindelof, Nature 408, 342 (2000).ADSCrossRefGoogle Scholar
  12. [12]
    D. S. Duncan, D. Goldhaber-Gordon, R.M. Westervelt, K.D. Maranowski, and A.C. Gossard, Appl. Phys. Lett. 77, 2183 (2000).ADSCrossRefGoogle Scholar
  13. [13]
    T. K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 (1988).ADSCrossRefGoogle Scholar
  14. [14]
    L. I. Glazman and M. E. Raikh, JETP Letters 47, 452 (1988).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • D. Goldhaber-Gordon
    • 1
    • 2
  • J. Göres
    • 2
  • Hadas Shtrikman
    • 1
  • D. Mahalu
    • 1
  • U. Meirav
    • 1
  • M. A. Kastner
    • 2
  1. 1.Braun Center for Submicron ResearchWeizmann Institute of ScienceRehovotIsrael
  2. 2.Physics DepartmentMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations