Skip to main content

Kondo Effect in Non-Equilibrium

Theory of energy relaxation induced by dynamical defects in diffusive nanowires

  • Chapter
Kondo Effect and Dephasing in Low-Dimensional Metallic Systems

Part of the book series: NATO Science Series ((NAII,volume 50))

Abstract

Recently, it has become possible to determine experimentally [1, 2] the distribution function of quasiparticles, f x (E,U), in dependence of the particle energy E in a metallic, diffusive nanowire in stationary nonequilibrium with a finite transport voltage U applied between the ends of the wire. The measurements were done by attaching an additional superconducting tunneling electrode at a position x along the wire, so that f x (E, U) could be extracted from the tunneling current

$$ {j_{t}} = \frac{e}{h}\gamma {N_{0}}\int {dE\left[ {{f_{x}}\left( {E,U} \right) - {f^{ \circ }}\left( {E + e{U_{t}}} \right)} \right]{N_{{BCS}}}\left( {E + e{U_{t}}} \right).} $$
(1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Pothier, S. Guéron, Norman O. Birge, D. Esteve, and M. H. Devoret, Phys. Rev. Lett. 79, 3490 (1997); Z. Phys. B 104, 178 (1997).

    Article  ADS  Google Scholar 

  2. F. Pierre, H. Pothier, D. Esteve, M. H. Devoret, A. B. Gougam, and N. O. Birge, these proceedings, p. 119.

    Google Scholar 

  3. K. E. Nagaev, Phys. Lett. A 169 103 (1992); Phys. Rev. B 52, 4740 (1995).

    Article  ADS  Google Scholar 

  4. P. Mohanty, E. M. Q. Jariwala, and R. A. Webb, Phys. Rev. Lett. 78, 3366 (1997).

    Article  ADS  Google Scholar 

  5. A. B. Gougam, F. Pierre, H. Pothier, D. Esteve, and Norman O. Birge, J. Low Temp. Phys. 118, 447 (2000).

    Article  ADS  Google Scholar 

  6. J. Kroha, Adv. Solid. State Phys. 40, 267 (2000).

    Article  Google Scholar 

  7. P. Nozières and A. Blandin, J. Phys. (Paris) 41, 193 (1980).

    Article  Google Scholar 

  8. For a comprehensive overview and references, see D. L. Cox and A. Zawadowski, Adv. Phys. 47, 599 (1998).

    Article  Google Scholar 

  9. P. B. Wiegmann and A. M. Tsvelik, Pis’ma Zh. eksp. teor. Fiz. 38, 489 (1983) [JETP Lett. 38, 591 (1983)]; Adv. Phys. 32, 453 (1983).

    Google Scholar 

  10. N. Andrei and C. Destri, Phys. Rev. Lett. 52, 364 (1984).

    Article  ADS  Google Scholar 

  11. A. Zawadowski, J. von Delft, and D. Ralph, Phys. Rev. Lett. 83, 2632 (1999).

    Article  ADS  Google Scholar 

  12. A. Kaminski and L. I. Glazman, Phys. Rev. Lett. 86, 2400 (2001).

    Article  ADS  Google Scholar 

  13. J. Sólyom and A. Zawadowski, Z. Phys. 226, 116 (1969).

    Article  ADS  Google Scholar 

  14. J. Kroha and A. Zawadowski (unpublished).

    Google Scholar 

  15. S. E. Barnes, J. Phys. F 6, 1375 (1976); 7, 2637 (1977).

    Article  ADS  Google Scholar 

  16. M. H. Hettler, J. Kroha, and S. Hershfield, Phys. Rev. Lett. 73, 1967 (1994); Phys. Rev. B 58, 5649 (1998).

    Article  ADS  Google Scholar 

  17. D. L. Cox and A. E. Ruckenstein, Phys. Rev. Lett. 71, 1613 (1993).

    Article  ADS  Google Scholar 

  18. E. Müller-Hartmann, Z. Phys. B 57, 281 (1984).

    Article  ADS  Google Scholar 

  19. J. Kroha and P. Wölfle, Phys. Rev. Lett. 79, 261 (1997).

    Article  ADS  Google Scholar 

  20. P. Coleman, C. Hooley, and O. Parcollet, Phys. Rev. Lett. 86, 4088 (2001).

    Article  ADS  Google Scholar 

  21. E. M Lifshitz and L. P Pitaevskii, in Landau and Lifshitz Course of Theoretical Physics, Vol. 10: Physical Kinetics (Butterworth-Heinemann, Oxford, 1997), Chapt. X.

    Google Scholar 

  22. E. Müller-Hartmann and G. T. Zittartz, Phys. Rev. Lett. 26, 428 (1971).

    Article  ADS  Google Scholar 

  23. R. P. Peters, G. Bergmann, and R. M. Müller, Phys. Rev. Lett. 58, 1964 (1987).

    Article  ADS  Google Scholar 

  24. F. Pierre, H. Pothier, D. Esteve, and M. H. Devoret, J. Low Temp. Phys. 118, 437 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kroha, J. (2001). Kondo Effect in Non-Equilibrium. In: Chandrasekhar, V., Van Haesendonck, C., Zawadowski, A. (eds) Kondo Effect and Dephasing in Low-Dimensional Metallic Systems. NATO Science Series, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0427-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0427-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0401-8

  • Online ISBN: 978-94-010-0427-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics