Skip to main content

Part of the book series: NATO Science Series ((NAIV,volume 7))

Abstract

Lichens are extremely efficient accumulators of chemical elements which are taken up from substrate solutions, deposited aerosols and rain; their thalli, particularly those with soralia or isidia, provide effective surfaces for uptake. In some cases, lichens can be severely affected by heavy metals, the latter’s presence in all probability exacerbating the damaging effects of sulphur dioxide pollution [25, 26, 44], and strong correlations between pollution level, lichen distribution and chemical uptake are often observed. To what extent many of these elements are usefully employed in the lichen thallus is as yet unknown [76]; many lichens certainly show a resilience to heavy metal uptake, and high concentrations have been determined in species growing on metal-enriched soils [61, 68].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aakrog, A. (1988) The radiological impact of the Chernobyl debris compared with that from nuclear weapons fallout, Journal of Environmental Radioactivity 6, 151–162.

    Article  Google Scholar 

  2. Akcay, H. (1995) Deposition of fission product radionuclides in lichens and coniferous plants in Turkey, Journal of Radioanalytical and Nuclear Chemistry, Letters 200, 147–158.

    Article  CAS  Google Scholar 

  3. Akcay, H. and Ardisson, G. (1988) Radioactive pollution of Turkish biotas one year after the Chernobyl accident, Journal of Radioanalytical and Nuclear Chemistry 128, 273–281.

    Article  CAS  Google Scholar 

  4. Akcay, H. and Kesercioglu, T. (1990) A systematic study on the West Anatolia lichens related to the Chernobyl fallout, Doga-Tr, Journal of Engineering and Environmental Science 14, 28–38.

    CAS  Google Scholar 

  5. Baeza, A., Miro, C., Paniagua, J.M., Navarro, E., Rodriguez, M.J., and Sanchez, F. (1994) Natural and artificial radioactivity levels in Livingston Island (Antarctic regions), Bulletin of Environmental Contamination and Toxicology 52, 117–124.

    Article  CAS  Google Scholar 

  6. Barci, G., Dalmasso, J., and Ardisson, G. (1988) Chernobyl fallout measurements in some Mediterranean biotas, The Science of the Total Environment 70, 373–387.

    Article  CAS  Google Scholar 

  7. Bartok, K. and Mocsy, I. (1990) Studies upon lichen radioactivity, Revue Roumaine de Biologie, Biol. Veget. 35, 61–65.

    Google Scholar 

  8. Bartok, K., Mocsy, I., Bolyos, A., and Dezso, Z. (1998) Studies on 137Cs content in lichens in mountain regions of Romania, Sauteria 9, 249–256.

    Google Scholar 

  9. Baskaran, M., Kelley, J.J., Naidu, A.S., and Holleman, D.F. (1991) Environmental radiocesium in subarctic and arctic Alaska following Chernobyl, Arctic 44, 346–350.

    Google Scholar 

  10. Biazrov, L.G. (1993) Lichens as indicators of radioactive contamination, Journal of Radioecology 1, 15–20.

    Google Scholar 

  11. Biazrov, L.G. (1994) The radionuclides in lichen thalli in Chernobyl and east Urals areas after nuclear accidents, Phyton 34, 85–94.

    CAS  Google Scholar 

  12. Biazrov, L.G., Desmet, G., Janssens, A., and Melin, J. (1994) Radionuclide content in lichen thallus in the forest adjacent to the Chernobyl atomic power plant, The Science of the Total Environment 157, 25–28.

    Article  CAS  Google Scholar 

  13. Bretten, S., Gaare, E., Skogland, T., and Steinnes, E. (1992) Investigations of radiocaesium in the natural terrestrial environment in Norway following the Chernobyl accident, Analyst 117, 501–503.

    Article  CAS  Google Scholar 

  14. Chant, L.A., Andrews, H.R., Comett, R.J., Koslowsky, V., Milton, J.C.D., van den Berg, G.J., Verbürg, T.G., and Wolterbeek, H.T. (1996) 129I and 36C1 concentrations in lichens collected in 1990 from three regions around Chernobyl, Applied Radiation Isotopes 47, 933–937.

    Article  CAS  Google Scholar 

  15. Chibowski, S., Solecki, Y., and Bystrek, J. (1998) The examination of gamma-emitter contamination level of the lichens from eastern and south-eastern Poland, collected in the years 1949-1996, Journal of Radioanalytical and Nuclear Chemistry 230, 319–322.

    Article  CAS  Google Scholar 

  16. Eckl, P., Hofmann, W., and Türk, R. (1986) Uptake of natural and man-made radionuclides by lichens and mushrooms, Radiation and Environmental Biophysics 25, 43–54.

    Article  CAS  Google Scholar 

  17. Eckl, P., Türk, R., and Hofmann, W. (1984) Natural and man-made radionuclide concentrations in lichens at several locations in Austria, Nordic Journal of Botany 4, 521–524.

    Article  Google Scholar 

  18. Elkin, B.T., and Bethke, R.W. (1995) Environmental contaminants in caribou in the Northwest Territories, Canada, The Science of the Total Environment 160/161, 307–321.

    Article  Google Scholar 

  19. Ellis, K.M. and Smith, J.N. (1987) Dynamic model for radionuclide uptake in lichen, Journal of Environmental Radioactivity 5, 185–208.

    Article  CAS  Google Scholar 

  20. Feige, G.B., Niemann, L., and Jahnke, S. (1990) Lichens and mosses — silent chronists of the Chernobyl accident, Bibliotheca Lichenologica 38, 63–77.

    Google Scholar 

  21. Gaare, E. (1987) The Chernobyl accident: can lichens be used to characterize a radiocesium contaminated range?, Rangifer 7, 46–50.

    Google Scholar 

  22. Gaare, E. (1990) Lichen content of radiocesium after the Chernobyl accident in mountains in southern Norway, in G. Desmet, P. Nassimbeni and M. Belli (eds.), Transfer of Radionuclides in Natural and Semi-natural Environments, Elsevier, London, 492, 501.

    Google Scholar 

  23. Godoy, J.M., Schuch, L.A., Nordemann, D.J.R., Reis, V.R.G., Ramalho, M., Recio, J.C., Brito, R.R.A., and Olech, M.A. (1998) 137Cs, 226,228Ra, 210Pb and 40K concentrations in Antarctic soil, sediment and selected moss and lichen samples, Journal of Environmental Radioactivity 41, 33–45.

    Article  CAS  Google Scholar 

  24. Gorham, E. (1959) A comparison of lower and higher plants as accumulators of radioactive fall-out, Canadian Journal of Botany 37, 327–329.

    Article  CAS  Google Scholar 

  25. Goyal, R. and Seaward, M.R.D. (1982) Metal uptake in terricolous lichens. II. Effects on the morphology of Peltigera canina and Peltigera rufescens, New Phytologist 90, 73–84.

    Article  CAS  Google Scholar 

  26. Goyal, R. and Seaward, M.R.D. (1981) Metal uptake in terricolous lichens. I. Metal localization within the thallus, New Phytologist 89, 631–645.

    Article  CAS  Google Scholar 

  27. Hanson, W.C. (1967) Caesium-137 in Alaskan lichens, caribou, and eskimos, Health Physics 13, 383–389.

    Article  CAS  Google Scholar 

  28. Heinrich, G. and Remele, K. (1996) 137Cs, 90Sr, K+, and Ca++ in lichens, mosses and vascular plants of a mountain area in Styria, Austria, Mitteilungen der Österreichischen Bodenkundl. Gesellschaft 53, 243–250.

    Google Scholar 

  29. Heinrich, G., Muller, H.J., Oswald, K., and Gries, A. (1989) Natural and artificial radionuclides in selected Styrian soils and plants before and after the reactor accident in Chernobyl, Biochemie und Physiologie der Pflanzen 185, 55–67.

    CAS  Google Scholar 

  30. Heinrich, G., Muller H.J., Oswald, K., and Wolkinger, F. (1989) Natürliche und Tschernobylverursachte Radionuklide in einigen Wasser-und Landpflanzen in Steiermark und Kärnten, Phyton 29, 61–68.

    CAS  Google Scholar 

  31. Holleman, D.F., Whire, R.G., and Allaye-Chan, A.C. (1990) Modelling of radiocesium transfer in the lichen-reindeer/caribou-wolf food chain, Rangifer, Special Issue 3, 39–42.

    Google Scholar 

  32. Holm, E., and Persson, B.R.R. (1975) Fall-out plutonium in Swedish reindeer lichen, Health Physics 29, 43–51

    Article  CAS  Google Scholar 

  33. Holm, E. and Rioseco, J. (1987) 99Tc in the sub-arctic food chain lichen-reindeer-man, Journal of Environmental Radioactivity 5, 343–357.

    Article  CAS  Google Scholar 

  34. Jacquiot, L. and Daillant, O. (1999) Bio-accumulation des radioelements par les lichens: revue bibliographique, Bulletin de l’Obervatoire Mycologique. 16, 2–23.

    Google Scholar 

  35. Jones, B.-E.V., Eriksson, O., and Nordkvist, M. (1989) Radiocesium uptake in reindeer pasture, The Science of the Total Environment 85, 207–212.

    Article  CAS  Google Scholar 

  36. Kondratyuk, S.Y., Navrotska, I.L., Brun, G.O., Beznis, N.G., Gizbullina, V.K., Izotova, N.V., and Lyugin, V.O. (1994) Study of radionuclide accumulation by lichens in the Ukraine, Ukrayinskyi Botanischnyi Zhurnal 51, 46–52, (in Ukrainian).

    CAS  Google Scholar 

  37. Kwapulinski, J., Seaward, M.R.D., and Bylinska, E.A. (1985) 137Caesium content of Umbilicaria species, with particular reference to altitude, The Science of the Total Environment 41, 125–133.

    Article  CAS  Google Scholar 

  38. Kwapulinski, J., Seaward, M.R.D., and Bylinska, E.A. (1985) Uptake of 226Radium and 228Radium by the lichen genus Umbilicaria, The Science of the Total Environment 41, 135–141.

    Article  CAS  Google Scholar 

  39. Lawrey, J.D. and Hale, M.E. (1981) Retrospective study of lead accumulation in the northeastern United States, The Bryologist 84, 449–456.

    Article  CAS  Google Scholar 

  40. Mable, T. (1987) Sytuacja w Polsce w Zakresie Skazen Promieniotworczych po Awarii Radiologicznej w Czarnobylu, Chemiczne Zagrozenia Srodowiska w Polsce, Uniwersytet Marii Curie-Sklodowskiej, Lublin.

    Google Scholar 

  41. Martin, L., Nifontova, M., and Martin, J. (1991) Radionuclides variation in macrolichens in Estonia after the Chernobyl accident, Proceedings of the Estonian Academy of Science, Ecol. 1, 42–51.

    Google Scholar 

  42. Mattsson, L.J.S. (1972) Sodium-22 in the foodchain: lichen-reindeer-man, Health Physics 23, 223–230.

    Article  CAS  Google Scholar 

  43. Mattsson, L.J.S. (1975) 137Cs in the reindeer lichen Cladonia alpestris: desposition, retention and internal distribution, 1961-1970, Health Physics 28, 233–248.

    Article  CAS  Google Scholar 

  44. Nieboer, E., Ahmed, H.M., Puckett, K.J., and Richardson, D.H.S. (1972) Heavy metal content of lichens in relation to distance from a nickel smelter in Sudbury, Ontario, Lichenologist 5, 292–304.

    Article  Google Scholar 

  45. Nifontova, M.G. (1998) Concentrations of long-lived artificial radionuclides in the moss-lichen cover of terrestrial ecosystems in the Ural-Siberian region, Russian Journal of Ecology 29, 196–200.

    Google Scholar 

  46. Nifontova, M.G. and Alexashenko, V.N. (1992) Content of 90Sr and 134,137Cs in fungi, lichens, and mosses in the vicinity of the Chernobyl nuclear power plant, Soviet Journal of Ecology 23, 152–155.

    Google Scholar 

  47. Nifontova, M.G. and Kulikov, N.V. (1981) 90Sr and 137Cs accumultion by some lower plants in the vicinity of Beloyarsk nuclear power station in the Urals, Ekologiya 12, 94–97 (in Russian).

    Google Scholar 

  48. Nifontova, M.G., Lebedeva, A.V., and Kulikov, N.V. (1979) Accumulation of 90Sr and 137Cs in live and dead lichens, Ekologiya 10, 94–97 (in Russian).

    Google Scholar 

  49. Nimis, P.L. (1996) Radiocesium in Plants of Forest Ecosystems, Studia Geobotanica 15, 3–49.

    Google Scholar 

  50. Paatero, J. and Jaakkola, T. (1994) Determination of the 241Pu deposition in Finland after the Chernobyl accident, Radiochimica Acta 64, 139–144.

    CAS  Google Scholar 

  51. Paatero, J., Jaakkola, T., and Kulmala, S. (1998) Lichen (sp. Cladonia) as a deposition indicator for transuranium elements investigated with the Chernobyl accident, Journal of Environmental Radioactivity 38, 223–247.

    Article  CAS  Google Scholar 

  52. Papastefanou, C., Manolopoulou, M., and Charalambous, S. (1988) Radiation measurements and radioecological aspects of fallout from the Chernobyl reactor accident, Journal of Environmental Radioactivity 7, 49–64.

    Article  CAS  Google Scholar 

  53. Richardson, D.H.S. (1992) Pollution Monitoring with Lichens, Richmond Publishing, Slough.

    Google Scholar 

  54. Rissanen, K. (1992) Lichens and plants obtained from permanent study plots in northern Finland as bioindicators for radioactive fallout, in E. Tikkanen, M. Varmola and T. Katermaa (eds.), Symposium on the State of the Environment and Environmental Monitoring in Northern Fennoscandia and the Kola Peninsula, University of Lapland Arctic Centre, Rovaniemi, pp. 320–322.

    Google Scholar 

  55. Rissanen, K. and Rahola, T. (1989) Cs-137 concentration in reindeer and its fodder plants, The Science of the Total Environment 85, 199–206.

    Article  CAS  Google Scholar 

  56. Rissanen, K. and Rahola, T. (1990) Radiocesium in lichens and reindeer after the Chernobyl accident, Rangifer Special Issue 3, 55–61.

    Google Scholar 

  57. Roos, P., Holm, E., Persson, R.B.R., Aarkrog, A., and Nielsen, S.P. (1994) Deposition of 210Pb, 137Cs, 239+240Pu, 238Pu, and 241Am in the Antarctic Peninsula area, Journal of Environmental Radioactivity 24, 235–251.

    Article  CAS  Google Scholar 

  58. Roos, P., Samuelson, C., and Mattsson, S. (1991) 137Cs in the lichen Cladina stellaris before and after the Chernobyl accident, in L. Moberg (ed.), The Chernobyl Fallout in Sweden, Swedish Radiation Protection Institute, Stockholm, pp. 389–400.

    Google Scholar 

  59. Saka, A.Z., Cevik, U., Bacaksuz, E., Kopya, A.I., and Tirasoglu, E. (1997) Levels of cesium radionuclides in lichens and mosses from the province of Ordu in the eastern Black Sea area of Turkey, Journal of Radioanalytical and Nuclear Chemistry 222, 87–92.

    Article  CAS  Google Scholar 

  60. Sawidis, T. (1988) Uptake of radionuclides by plants after the Chernobyl accident, Environmental Pollution 50, 317–324.

    Article  CAS  Google Scholar 

  61. Seaward, M.R.D. (1973) Lichen ecology of Scunthorpe heathlands. I. Mineral accumulation, Lichenologist 5, 423–433.

    Article  Google Scholar 

  62. Seaward, M.R.D. (1991) Biomonitoring radionuclides in eastern Europe, pre-and post-Chernobyl, in Z. Ayvaz (ed.), Environmental Pollution and Control, Ege University, Izmir, pp 80–89.

    Google Scholar 

  63. Seaward, M.R.D. (1992) Lichens, Silent Witnesses of the Chernobyl Disaster, Inaugural lecture, University of Bradford, Bradford.

    Google Scholar 

  64. Seaward, M.R.D. (1994) Measuring up to disaster: the necessity for valid baseline data, Disaster Prevention Management 3 (4), 17–26.

    Article  Google Scholar 

  65. Seaward, M.R.D. (1995) Use and abuse of heavy metal bioassays in environmental monitoring, The Science of the Total Environment 176, 129–134.

    Article  CAS  Google Scholar 

  66. Seaward, M.R.D., Bylinska, E.A., and Goyal, R. (1981) Heavy metal content of Umbilicaria species from the Sudety region of S.W. Poland, Oikos 36, 107–113.

    Article  CAS  Google Scholar 

  67. Seaward, M.R.D., Heslop, J.A., Green, D., and Bylinska, E.A. (1988) Recent levels of radionuclides in lichens from southwest Poland with particular reference to 134Cs and 137Cs, Journal of Environmental Radioactivity 7, 123–129.

    Article  CAS  Google Scholar 

  68. Shimwell, D.W. and Laurie, A.E. (1972) Lead and zinc contamination of vegetation in the southern Pennines, Environmental Pollution 3, 291–301.

    Article  CAS  Google Scholar 

  69. Sloof, J.E. and Wolterbeek, B.T. (1992) Lichens as biomonitors for radiocaesium following the Chernobyl accident, Journal of Environmental Radioactivity 16, 229–242.

    Article  CAS  Google Scholar 

  70. Smith, D.C., and Molesworth, S. (1973) Lichen physiology. XIII. Effects of rewetting dry lichens, New Phytologist 72, 525–533.

    Article  Google Scholar 

  71. Smith, F.B. and Clark, M.J. (1986) Radionuclide deposition from the Chernobyl cloud, Nature (London) 322, 690–691.

    Article  CAS  Google Scholar 

  72. Smith, J.N. and Ellis, K.M. (1990) Time dependent transport of Chernobyl radioactivity between atmospheric and lichen phases in eastern Canada, Journal of Environmental Radioactivity 11, 151–168.

    Article  Google Scholar 

  73. Strandberg, M. (1997) Distribution of 137Cs in a low arctic ecosystem in West Greenland, Arctic 50, 216–223.

    Google Scholar 

  74. Taylor, H.W., Svoboda, J., Henry, G.H.R., and Wein, R.W. (1988) Post-Chernobyl cesium-134 and cesium-137 levels at some localities in northern Canada, Arctic 41, 293–296.

    Google Scholar 

  75. Topcuoglu, S., Van Dawen, A.M., and Gungor, N. (1995) The natural depuration rate of 137Cs radionuclides in a lichen and moss species, Journal of Environmental Radioactivity 29, 157–162.

    Article  CAS  Google Scholar 

  76. Tuominen, Y. and Jaakkola, T. (1973) Absorption and accumulation of mineral elements and radioactive nuclides, in V. Ahmadjian and M.E. Hale (eds.), The Lichens, Academic Press, New York, pp 185–223.

    Chapter  Google Scholar 

  77. Van den Berg, G.J., Tyssen, T.P.M., Ammerlaan, M.J.J., Volkers, K.J., Woroniecka, U.D., de Bruin, M., and Wolterbeek, H.T. (1992) Radiocesium lead in the lichen species Parmelia sulcata sampled in three regions around Chernobyl: assessment of concentrations in 1990, Journal of Environmental Radioactivity 17, 115–127.

    Article  Google Scholar 

  78. Wasser, S.P. (ed.) (1995) Accumulation of Radionuclides by Cryptogamic Plants and Higher Fungi of the Ukraine, M.G. Kholodny Institute of Botany, Kiev (in Ukrainian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Seaward, M.R.D. (2002). Lichens as Monitors of Radioelements. In: Nimis, P.L., Scheidegger, C., Wolseley, P.A. (eds) Monitoring with Lichens — Monitoring Lichens. NATO Science Series, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0423-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0423-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0430-8

  • Online ISBN: 978-94-010-0423-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics