Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 63))

  • 173 Accesses

Abstract

Evolution is based on a complex and intertwined interplay between generation of new variants and their selection by competition in the environment. Much research has established that the generation of evolutionary diversity is not a passive process that just “occurs” to organisms: rather, a fluid and active set of strategies is in place so that living beings control the ways in which diversity is generated. We describe some of the consequences for our current views of evolu- tionary theory and survey how the understanding of the field is changing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of the Cell, 3rd ed, Garland, New York, 1994.

    Google Scholar 

  2. H. Lodish et al., Molecular Cell Biology, W. H. Freeman & Co., 1999.

    Google Scholar 

  3. T. A. Brown, Genomes, Wiley-Liss (1999)

    Google Scholar 

  4. Mark Ridley, Evolution, Second Edition, Blackwell Science, Cambridge, 1996

    Google Scholar 

  5. Eldredge N., Gould S.J., in Models in Paleobiology ,Schopf T. J. M. ed., San Francisco: Freeman, Cooper and Co. (1972)

    Google Scholar 

  6. S. L. Rutherford and S. Lindquist, HSP90 as a capacitor for morphological evolution, Nature, 396 336, (1998)

    Article  ADS  Google Scholar 

  7. E. Mayr, Some thoughts on the history of the evolutionary synthesis, in The evolutionary synthesis: perspectives on the univication of biology, E. Mayr and W. Provine, eds, Harvard University Press, Cambridge, 1980.

    Google Scholar 

  8. N. Eldredge, Macro-evolutionary dynamics: species, niches, and adaptive peaks , McGraw Hill (1989)

    Google Scholar 

  9. S. Wright, Proc. Sixth Int. Congr. Genetics 1 356 (1932)

    Google Scholar 

  10. Newman CM, Cohen JE, Kipnis C, Nature 315 400 (1985)

    Article  ADS  Google Scholar 

  11. Kauffman, S. A. The origins of order: self-organizationand selection in evolution. Oxford: Oxford University Press (1993)

    Google Scholar 

  12. T. Dobzhansky, Genetics and the Origin of Species ,3rd ed., Columbia University Press (1951)

    Google Scholar 

  13. J. von Neumann and O. Morgenstern, Theory of games and economic behaviour, Princeton University Press, Princeton, 1944.

    Google Scholar 

  14. J. Maynard-Smith, The evolution of sex, Cambridge University Press, Cambridge, UK, 1978.

    Google Scholar 

  15. J. Maynard-Smith and E. Szathmary, The major transitions in evolution, W.H.Freeman/Spektrum, Oxford UK and New York, 1995

    Google Scholar 

  16. J. Maynard-Smith, Games, sex, and evolution, Harvester-Wheatsheaf, New York, 1988.

    Google Scholar 

  17. P.Bak and K. Sneppen, Punctuated equlibrium and criticality in a simple model of evolution, Phys Rev. Lett. 71 4083–4086 (1993 )

    Article  ADS  Google Scholar 

  18. Kimura, M. Genet. Res. (Camb.) 9 23 (1967)

    Article  ADS  Google Scholar 

  19. Maruyama T. and Kimura M. Evolution 28 161 (1974)

    Article  Google Scholar 

  20. Eckert, K. A. and Kunkel, T. A. PCR Meth. and Applic. 117 (1991)

    Article  Google Scholar 

  21. Kunkel, T. A. J. Biol. Chem. 267 18251 (1992)

    Google Scholar 

  22. Rayssiguier, C.A., Thaler, D.S. and Radman, M.Nature 342 396 (1989)

    Article  ADS  Google Scholar 

  23. Goodman M. F., Creighton, S., Bloom, L. B. and Petruska, J.Crit. Revs. Biochem. and Mol. Biol. 28 83 (1993)

    Article  Google Scholar 

  24. Radman, M., Matic I., Halliday J. A. and Taddei F.Phil. Trans. Royal Soc. London B 347 97 (1995)

    Article  ADS  Google Scholar 

  25. Sturtevant, A. H., Quat. Rev. Biol. 12 464 (1937)

    Article  Google Scholar 

  26. Nowell, P. C., Science 194 23 (1976)

    Article  ADS  Google Scholar 

  27. Fishel R. and Kolodner, R. D.,Curr. Opin. Genet. & Devel. 5 .3 382 (1995)

    Article  Google Scholar 

  28. Boyer JC, Thomas DC, Maher VM, McCormick JJ, Kunkel TA,Cancer Res. 53 .14 3270(1993)

    Google Scholar 

  29. Drake, J. W. Proc. Natl. Acad. Sci. USA 88 7160 (1991)

    Article  ADS  Google Scholar 

  30. Drake, J. W. BioEssays 14 .2 137 (1992)

    Article  Google Scholar 

  31. Thaler, D. S. Science 264 224 (1994)

    Article  ADS  Google Scholar 

  32. Kornberg A., Barker T., DNA Replication , Chapter 21,W. H. Freeman (1992)

    Google Scholar 

  33. J. J. Hopfield, Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity, Proc. Natl. Acad. Sci. U.S.A. 71 4135–4139 (1974)

    Article  ADS  Google Scholar 

  34. J. Ninio, Kinetic amplification of enzyme discrimination, Biochimie 57 587–595 (1975)

    Article  Google Scholar 

  35. M. Cascalho et al, Mimatch Repair co-opted by hypermutation, Science 279 1207 (1998)

    Article  ADS  Google Scholar 

  36. F. Taddei et al, Correction by MutT Protein of transcriptional errors caused by oxidative damage, Science, 278, 128 (1997)

    Article  Google Scholar 

  37. S. D. Bruner et al, Nature 403 859 (2000)

    Article  ADS  Google Scholar 

  38. J. Ninio, Biochimie 73, 1517 (1991)

    Article  Google Scholar 

  39. Shapiro, J.A., Adaptive mutation: who’s really in the garden? Science 268 373– 374 (1995)

    Article  ADS  Google Scholar 

  40. Shapiro, J.A. Transposable elements as the key to a 21st century view of evolution, Genetica 107 (1-3): 171–179 (1999)

    Article  Google Scholar 

  41. Shapiro, J.A. Structured pathways for variation: Evolution as a biological function, Ann NY Acad. Sci. 870 95–98 (1999)

    Article  ADS  Google Scholar 

  42. M. Magnasco and D. Thaler, Changing the pace of evolution, Phys. Lett. A 221(5) 287–292 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. F. Taddei et al, Role of mutator alleles in adaptive evolution, Nature 387 700 (1977)

    Article  ADS  Google Scholar 

  44. D. Field et al, Contingenci loci, mutator alleles and their interactions, Ann. NY Acad Sci 870 378–382 (1999)

    Article  ADS  Google Scholar 

  45. E. R. Moxon et al, Curr. Biol. 4 24–33 (1994)

    Article  Google Scholar 

  46. E. R. Moxon andD. Thaler, The tinkerer’s evolving toohbox, Nature 387 659 (1997)

    Article  ADS  Google Scholar 

  47. Rice W. R., Sexually antagonistic male adaptation triggered by experimental arrest of female evolution, Nature 381 232–234 (1996)

    Article  ADS  Google Scholar 

  48. N. K. Michiels and L. J. Newman, Sex and violence in hermaphrodites, Nature 391 647–64 (1998)

    Article  ADS  Google Scholar 

  49. Crudgington, H. S. and Siva-Jothy M. T., Genital damage, kicking and early death: The battle of the sexes takes a sinister turn in the bean weevil, Nature 407 855–856 (2000)

    Article  ADS  Google Scholar 

  50. A. Oliver et al, High Frequency of Hypermutable Pseudomonas aeruginosa in Cystic Fibrosis Lung Infection, Science 288 1251 (2000) .

    Article  ADS  Google Scholar 

  51. M. Radman, I. Matic, F. Taddei, Evolution of evolvability, Ann. N.Y. Acad. Sci. 870 146–155 (1999)

    Article  ADS  Google Scholar 

  52. I. Matic and M. Radman, Highly varialble mutation rates in commensal and pathogenic Escherichia coli. Science, 277, 1833 (1997), and see the following response by J. LeClerc and T. Cebula

    Article  Google Scholar 

  53. A. Giraud et al, Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut, Science 291 2606 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Magnasco, M.O. (2002). The evolution of evolutionary engines. In: Skjeltorp, A.T., Vicsek, T. (eds) Complexity from Microscopic to Macroscopic Scales: Coherence and Large Deviations. NATO Science Series, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0419-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0419-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0634-0

  • Online ISBN: 978-94-010-0419-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics