Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 63))

Abstract

Control over electron-spin states, such as coherent manipulation, filtering and measurement promises access to new technologies in conventional as well as in quantum computation and quantum commu- nication. We review our proposal of using electron spins in quantum confined structures as qubits and discuss the requirements for implementing a quantum computer. We describe several realizations of one- and two-qubit gates and of the read-in and read-out tasks. We discuss recently proposed schemes for using a single quantum dot as spin-filter and spin-memory device. Considering electronic EPR pairs needed for quantum communication we show that their spin entanglement can be detected in meso- scopic transport measurements using metallic as well as superconducting leads attached to the dots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Prinz, Phys. Today 45 (4), 58 (1995);

    Article  Google Scholar 

  2. G. A. Prinz, Science 282, 1660 (1998).

    Article  Google Scholar 

  3. J. M. Kikkawa, I.P. Smorchkova, N. Samarth, and D. D. Awschalom, Science 277, 1284 (1997);

    Article  Google Scholar 

  4. J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998);

    Article  ADS  Google Scholar 

  5. D. D. Awschalom and J. M. Kikkawa, Phys. Today 52 (6), 33 (1999).

    Article  Google Scholar 

  6. R. Fiederung et al., Nature 402, 787 (1999).

    Article  ADS  Google Scholar 

  7. Y. Ohno et al., Nature 402, 790 (1999).

    Article  ADS  Google Scholar 

  8. F. G. Monzon and M. L. Roukes, J. Magn. Magn. Mater. 198, 632 (1999).

    Article  ADS  Google Scholar 

  9. S. Lüscher et al., cond-mat/0002226.

    Google Scholar 

  10. D. Loss and D. P. Divincenzo, Phys. Rev. A 57, 120 (1998); cond-mat/9701055.

    Article  ADS  Google Scholar 

  11. A. Steane, Rep. Prog. Phys. 61, 117 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  12. D. P. Divincenzo and D. Loss, J. Magn. Magn. Mater. 200, 202 (1999); cond-mat/9901137.

    Article  ADS  Google Scholar 

  13. C. H. Bennett and D. P. Divincenzo, Nature 404, 247 (2000).

    Article  ADS  Google Scholar 

  14. D. P. Divincenzo, G. Burkard, D. Loss, and E. Sukhorukov, in Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics, eds. I. O. Kulik and R. Ellialtoglu (NATO ASI, Turkey, June 13–25, 1999); see cond-mat/99112445.

    Google Scholar 

  15. P. W. Shor, in Proc. 35th Symposium on the Foundations of Computer Science, (IEEE Computer Society Press), 124 (1994).

    Chapter  Google Scholar 

  16. L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).

    Article  ADS  Google Scholar 

  17. J.I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995);

    Article  ADS  Google Scholar 

  18. C. Monroe et al., ibid.Phys. Rev. Lett. 75, 4714 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Q. A. Turchette et al., Phys. Rev. Lett. 75, 4710 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  20. D. Cory, A. Fahmy, and T. Havel, Proc. Nat. Acad. Sci. U.S.A. 94, 1634 (1997);

    Article  ADS  Google Scholar 

  21. N. A.Gershenfeld and I. L. Chuang, Science 275, 350 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Kane, Nature 393, 133 (1998).

    Article  ADS  Google Scholar 

  23. A. Shnirman, G. Schön, and Z. Hermon, Phys. Rev. Lett. 79, 2371 (1997).

    Article  ADS  Google Scholar 

  24. D. V. Averin, Solid State Commun. 105, 659 (1998).

    Article  ADS  Google Scholar 

  25. L. B. Ioffe et al., Nature 398, 679 (1999).

    Article  ADS  Google Scholar 

  26. T. P. Orlando et al., Phys. Rev. B 60, 15398 (1999).

    Article  ADS  Google Scholar 

  27. C. H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India (IEEE, NY, 1984), p. 175.

    Google Scholar 

  29. L. P. Kouwenhoven et al., Proceedings of the ASI on Mesoscopic Electron Transport, eds. L. L.Sohn, L. P. Kouwenhoven, and G. Schön (Kluwer, 1997).

    Google Scholar 

  30. S. Tarucha et al., Phys. Rev. Lett. 77, 3613 (1996).

    Article  ADS  Google Scholar 

  31. F. R. Waugh et al., Phys. Rev. Lett. 75, 705 (1995);

    Article  ADS  Google Scholar 

  32. C. Livermore et al., Science 274, 1332(1996).

    Article  ADS  Google Scholar 

  33. T. H. Oosterkamp et al., Phys. Rev. Lett. 80, 4951 (1998).

    Article  ADS  Google Scholar 

  34. R. H. Blick et al., Phys. Rev. Lett. 80, 4032 (1998);

    Article  ADS  Google Scholar 

  35. R. H. Blick et al., Phys. Rev. Lett.ibid. 81, 689 (1998).

    Article  ADS  Google Scholar 

  36. T. H. Oosterkamp et al., Nature 395, 873 (1998);

    Article  ADS  Google Scholar 

  37. I. J. Maasilta and V. J. Goldman, Phys. Rev. Lett. 84, 1776 (2000).

    Article  ADS  Google Scholar 

  38. J. A. Gupta, D. D. Awschalom, X. Peng, and A. P. Alivisatos, Phys. Rev. B 59, R10421 (1999).

    Article  ADS  Google Scholar 

  39. A. V. KhaetskiI and Y. V. Nazarov, Phys. Rev. B 61, 12639 (2000); cond-mat/00035513.

    Article  ADS  Google Scholar 

  40. G. Burkard, D. Loss, and D. P. Divincenzo, Phys. Rev. B 59, 2070 (1999).

    Article  ADS  Google Scholar 

  41. A. Imamoglu et al., Phys. Rev. Lett. 83, 4204 (1999).

    Article  ADS  Google Scholar 

  42. G. Burkard, D. Loss, D. P. Divincenzo, and J. A. Smolin, Phys. Rev. B 60, 11404 (1999).

    Article  ADS  Google Scholar 

  43. P. W. Shor, Phys. Rev. A 52, R2493 (1995);

    Article  ADS  Google Scholar 

  44. A. M. Steane, Phys. Rev. Lett. 77, 793 (1996);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. D. P. Divincenzo and P. W. Shor,Phys. Rev. Lett. ibid. 77, 3260 (1996);

    Article  ADS  Google Scholar 

  46. E. Knill and R. Laflamme, Phys.Rev. A 55, 900 (1997);

    Article  MathSciNet  ADS  Google Scholar 

  47. D. Gottesman,Phys.Rev. A ibid. 54, 1862 (1996);

    Article  MathSciNet  ADS  Google Scholar 

  48. E. Dennis, quant-ph/9905027.

    Google Scholar 

  49. L. Kouwenhoven and C. Marcus, private communication.

    Google Scholar 

  50. M. Dobers et al., Phys. Rev. Lett. 61, 1650 (1988).

    Article  ADS  Google Scholar 

  51. D. C. Dixon, K. R. Wald, P. L. Mceuen, and M. R. Melloch, Phys. Rev. B 56, 4743 (1997).

    Article  ADS  Google Scholar 

  52. P. Recher, E. V. Sukhorukov, and D. Loss, cond-mat/0003089.

    Google Scholar 

  53. R. Shankar, Principles of Quantum Mechanics, Ch. 14, Plenum Press, New York, 1994.

    Book  MATH  Google Scholar 

  54. D. P. Divincenzo, Phys. Rev. A 51, 1015 (1995).

    Article  ADS  Google Scholar 

  55. A. Barenco et al., Phys. Rev. A 52, 3457 (1995).

    Article  ADS  Google Scholar 

  56. R. Vrijen et al., quant-ph/9905096.

    Google Scholar 

  57. M.-S. Choi, C. Bruder, and D. Loss, cond-mat/0001011.

    Google Scholar 

  58. G. Burkard, G. Seelig, and D. Loss, to be published in Phys. Rev. B, July 2000; cond-mat/9910105.

    Google Scholar 

  59. R. J. Luyken et al., preprint.

    Google Scholar 

  60. D. G. Austtng et al., Physica B 249–251, 206 (1998).

    Article  Google Scholar 

  61. E. L. Ivchenko, A. A. Kiselev, and M. Willander, Solid State Comm. 102, 375 (1997).

    Article  ADS  Google Scholar 

  62. K. Ensslin, private communication.

    Google Scholar 

  63. A. Peres, Quantum Theory: Concepts and Methods (Kluwer, Dondrecht, 1993).

    MATH  Google Scholar 

  64. M. Devoret, D. Estève, and C. Urbina, Nature (London) 360, 547 (1992).

    Article  ADS  Google Scholar 

  65. G. D. Mahan, Many Particle Physics, 2nd Ed. (Plenum, New York, 1993).

    Google Scholar 

  66. L. P. Kouwenhoven, G. Schön, and L. L. Sohn, Mesoscopic Electron Transport, NATO ASI Series E: Applied Sciences-Vol. 345 Springer Science+Business Media Dordrecht, 1997.

    Google Scholar 

  67. D. V. Averin and Yu. V. Nazarov, in Single Charge Tunneling, eds. H. Grabert, M. H. Devoret,NATO ASI Series B: Physics Vol. 294, Plenum Press, New York, 1992.

    Google Scholar 

  68. M. Ciorga et al., cond-mat/9912446.

    Google Scholar 

  69. D. Loss and E. V. Sukhorukov, Phys. Rev. Lett. 84, 1035 (2000).

    Article  ADS  Google Scholar 

  70. G. Burkard, D. Loss, and E. V. Sukhorukov, to be published in Phys. Rev. B, June 2000;cond-mat/9906071.

    Google Scholar 

  71. A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982);

    Article  MathSciNet  ADS  Google Scholar 

  72. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 81, 3563 (1998).

    Article  ADS  Google Scholar 

  73. D. Bouwmeester et al., Nature 390, 575 (1997);

    Article  ADS  Google Scholar 

  74. D. Boscm et al., Phys. Rev. Lett. 80, 1121 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  75. R. Loudon, Phys. Rev. A 58, 4904 (1998).

    Article  ADS  Google Scholar 

  76. R. Hanbury Brown and R. Q. TwIss, Nature (London) 177, 27 (1956).

    Article  ADS  Google Scholar 

  77. M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990);

    Article  ADS  Google Scholar 

  78. M. Büttiker,Phys. Rev. B 46, 12485 (1992).

    Article  ADS  Google Scholar 

  79. T. Martin and R. Landauer, Phys. Rev. B 45, 1742 (1992).

    Article  ADS  Google Scholar 

  80. E. V. Sukhorukov and D. Loss, Phys. Rev. B 59, 13054 (1999).

    Article  ADS  Google Scholar 

  81. R. C. Liu, B. Odom, Y. Yamamoto, and S. Tarucha, Nature 391, 263 (1998);

    Article  ADS  Google Scholar 

  82. M. Henny et al.,Science 284, 296 (1999);

    Article  ADS  Google Scholar 

  83. W. D. Oliver et al., ibid., 299 (1999).

    Google Scholar 

  84. V. A. Khlus, Zh. Eksp. Teor. Fiz. 93, 2179 (1987).

    Google Scholar 

  85. J. König, H. Schoeller, and G. Schön, Phys. Rev. Lett. 78, 4482 (1997).

    Article  ADS  Google Scholar 

  86. D. Loss and P. Goldbart, Phys. Rev. B 45, 13544 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Burkard, G., Engel, HA., Loss, D. (2002). Spintronics and Quantum Dots for Quantum Computing and Quantum Communication. In: Skjeltorp, A.T., Vicsek, T. (eds) Complexity from Microscopic to Macroscopic Scales: Coherence and Large Deviations. NATO Science Series, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0419-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0419-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0634-0

  • Online ISBN: 978-94-010-0419-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics