Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 63))

Abstract

In this work we axe interested in dephasing or decoherence in the zero-temperature limit. The only source of decoherence are then provided by vacuum (zero-point) fluctuations. Concern with vacuum fluctuations has a long history [1] starting with theories of black-body radiation and the Planck spectrum and important effects like the Lamb shift, the Casimir effect and the Debye-Waller factor. More recently, the role of vacuum fluctuations was discussed in theories of macroscopic quantum tunneling and even more closely related to our subject in theories of macroscopic quantum coherence [2, 3]. In mesoscopic physics, we deal with systems that are so small and are cooled to such low temperatures that the wave nature of electrons becomes important and interference effects become measurable. Dephasing processes are therefore also of central importance in mesoscopic physics. Ultimately in the zero-temperature limit only vacuum fluctuations remain and it is clearly very interesting and fascinating to inquire about a possible role of such fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. W. Milloni, The Quantum Vacuum, (Academic Press, Boston, 1994).

    Google Scholar 

  2. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).

    Article  ADS  Google Scholar 

  3. U. Weiss, Quantum Dissipative Systems, (Word Scientific, 2000).

    Google Scholar 

  4. I. L. Aleiner, B. L. Altshuler, and M. E. Gershenson, Waves in Random Media 9, 201 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. G. M. Palma, K.-A. Souminen, and A. Ekert, Proc. Royal Soc. London, A 452, 567 (1996).

    Article  ADS  MATH  Google Scholar 

  6. P. Mohanty, E. M. Q. Jariwala, and R. A. Webb, Phys. Rev. Lett. 78, 3366 (1997).

    Article  ADS  Google Scholar 

  7. P. Mohanty, Ann. Physik 8, 549 (1999).

    Google Scholar 

  8. D. S. Golubev and A. D. Zaikin, Phys. Rev. Lett. 82, 3191 (1999)

    Article  ADS  Google Scholar 

  9. A. D. Zaikin and D. S. Golubev, Physica B 280, 453 (2000).

    Article  ADS  Google Scholar 

  10. I. L. Aleiner, B. L. Altshuler, and M. E. Gershenson, Phys. Rev. Lett. 82, 3190 (1999).

    Article  ADS  Google Scholar 

  11. D. Natelson, R. L. Willett, K. W. West, and L. N. Pfeiffer, Phys. Rev. Lett. 78, 1821 (2001).

    Article  ADS  Google Scholar 

  12. D. Natelson, R. L. Willett, K. W. West, and L. N. Pfeiffer, A large set of closely related experiments is reported by J. J. Lin and L. Y. Kao, J. Phys. Condens. Matter 13, L119 (2001).

    Article  Google Scholar 

  13. M. Büttiker and C. A. Stafford, Phys. Rev. Lett. 76, 495 (1996).

    Article  ADS  Google Scholar 

  14. P. Cedraschi, V. V. Ponomarenko, and M. Büttiker, Phys. Rev. Lett. 84, 346 (2000).

    Article  ADS  Google Scholar 

  15. S. Chakravarty, Phys. Rev. Lett. 49, 681 (1982).

    Article  ADS  Google Scholar 

  16. A. J. Bray and M. A. Moore, Phys. Rev. Lett. 49, 1545 (1982).

    Article  ADS  Google Scholar 

  17. D. Loss and K. Mullen Phys. Rev. B 43, 13252 (1991).

    Article  ADS  Google Scholar 

  18. H. Lamb, Proc. London Math. Soc. 53, 208 (1900).

    Article  MathSciNet  Google Scholar 

  19. G. W. Ford, J. T. Lewis, and R. F. O’Connel, Phys. Rev. A 37, 4419 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  20. B. Yurke and J. S. Denker, Phys. Rev. A 29, 1419 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  21. C. W. Gardiner and P. Zoller, Quantum Noise, (Springer, Heidelberg, 2001).

    Google Scholar 

  22. K. Nagaev and M. Büttiker, (unpublished).

    Google Scholar 

  23. U. Gavish, Y. Levinson, and Y. Imry, Phys. Rev. B 62, R10637 (2000).

    Article  ADS  Google Scholar 

  24. R. Becker, Theorie der Wärme, (Springer Verlag, Berlin, 1966).

    Google Scholar 

  25. W. H. Zurek, Physics Today, October, 36 (1991);

    Google Scholar 

  26. A. Stern, Y. Aharonov, and Y. Imry, Phys. Rev. A 41, 3436 (1990).

    Article  ADS  Google Scholar 

  27. P. Cedraschi and M. Büttiker, Annals of Physics, 289, 1 - 23 (2001).

    Article  ADS  Google Scholar 

  28. P. Cedraschi and M. Büttiker, Phys. Rev. B 63, 165312 (2001).

    Article  ADS  Google Scholar 

  29. D. Loss and T. Martin Phys. Rev. B 47, 4619 (1993).

    Article  ADS  Google Scholar 

  30. V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. H. Devoret, J. of Superconductivity, 12, 789 (1999).

    Article  Google Scholar 

  31. J. E. Moji et al, Science 285, 1036 (1999).

    Article  Google Scholar 

  32. L. Tian, L. S. Levitov, C. H. van der Wal, J. E. Mooij, T. P. Orlando, S. Lloyd, C. J. P. M. Harmans, and J. J. Mazo, in “Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics”, edited by I. O. Kulik and R. Ellialtioglu, (Kluwer, Netherlands, 2000). p. 429.

    Chapter  Google Scholar 

  33. Y. Makhlin, G. Schön, and A. Shnirman, in “Quantum Physics at Mesoscopic Scale” edited by D.C. Glattli, M. Sanquer and J. Tran Thanh Van (EDP Sciences, Les Ulis, 2000). p. 113

    Google Scholar 

  34. C. W. J. Beenakker, Phys. Rev. B 44, 1646 (1991).

    Article  ADS  Google Scholar 

  35. H.-P. Eckle, H. Johannesson, and C. A. Stafford, J. Low Temp. Phys. 118, 475 (2000). cond-mat/0010101

    Article  Google Scholar 

  36. K. Kang and S.-C. Shin, Phys. Rev. Lett. 85, 5619 (2000).

    Article  ADS  Google Scholar 

  37. I. Affleck and P. Simon, Phys. Rev. Lett. 86, 2854 (2001)

    Article  ADS  Google Scholar 

  38. P. Simon, I. Affleck, cond-mat/0103175 .

    Google Scholar 

  39. Hui Hu, Guang-Ming Zhang, Lu Yu, Phys. Rev. Lett. 86, 18 June, 2001, condmat/0105423 .

    Article  Google Scholar 

  40. U. Weiss and M. Wollensak, Phys. Rev. Lett. 62, 1663 (1989).

    Article  ADS  Google Scholar 

  41. R. Görlich, M. Sassetti, and U. Weiss, Europhys. Lett. 10, 507 (1989).

    Article  ADS  Google Scholar 

  42. T. A. Costi and Kieffer, Phys. Rev. Lett. 76, 1683 (1996).

    Article  ADS  Google Scholar 

  43. M. Grifoni, E. Paladino and U. Weiss, Eur. Phys. J. B10, 719 (1999).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Büttiker, M. (2002). Irreversibility and Dephasing from Vacuum Fluctuations. In: Skjeltorp, A.T., Vicsek, T. (eds) Complexity from Microscopic to Macroscopic Scales: Coherence and Large Deviations. NATO Science Series, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0419-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0419-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0634-0

  • Online ISBN: 978-94-010-0419-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics