Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 63))

  • 170 Accesses

Abstract

Using a simple “sandpile” model for the dynamics of supercon- ducting vortices, the connection between the vortex dynamics and the dy- namics of other complex systems, especially granular systems, is explored. Numerical simulations of the model are compared to a variety of experi- ments on type II superconductors revealing remarkable quantitative similar- ities. The connection with self-organized criticality and related dynamical phenomena to the vortex dynamics is a particular focus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Gennes, P.G. (1966) Superconductivity of Metals and Alloys, Benjamin, New York.

    MATH  Google Scholar 

  2. Bean, C.P. (1964) Magnetization of high-field superconductors, Rev. Mod. Phys. 36, 31–36.

    Article  ADS  Google Scholar 

  3. Frette, V., Christensen, K., Malthe-Sørensen, Feder, J., Jossang, T., and Meakin, P. (1996) Avalanche dynamics in a pile of rice, Nature 379, 49–52.

    Article  ADS  Google Scholar 

  4. Bak, P., Tang, C., and Wiesenfeld, K. (1987) Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett. 59, 381–384.

    Article  MathSciNet  ADS  Google Scholar 

  5. Bak, P., Tang, C., and Wiesenfeld, K. (1988) Self-organized criticality, Phys. Rev. A 38, 364–374.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. for a review see Bak, P. (1996) How Nature Works: The Science of Self-Organized Criticality, Copernicus, New York.

    MATH  Google Scholar 

  7. Tang, C. (1993) SOC and the Bean critical state, Physica A 154, 315–320.

    Article  ADS  Google Scholar 

  8. Bassler, K.E. and Paczuski, M. (1998) A simple model of superconducting vortex avalanches, Phys. Rev. Lett. 81, 3761–3764.

    Article  ADS  Google Scholar 

  9. The choice of the lattice is somewhat arbitrary. We can also choose a honeycomb lattice, for example.

    Google Scholar 

  10. Paczuski, M., Maslov, S., and Bak, P. (1996) Phys. Rev. E 53, 414.

    Article  ADS  Google Scholar 

  11. Heiden, C. and Rochlin, G.I. (1968) Flux jump size distribution in 1OW-? type-II superconductors, Phys. Rev. Lett. 21, 691–694.

    Article  ADS  Google Scholar 

  12. Field, S., Witt, J., Nori, F., and Ling, X.S. (1995) Superconducting vortex avalanches, Phys. Rev. Lett. 74, 1206–1209.

    Article  ADS  Google Scholar 

  13. Behnia, K., Capan, C., Mailly, D., and Etienne, B. (1999) Vortex avalanches in a type II superconductor, J. Low Temp. Phys. 117, 1435–1439.

    Article  Google Scholar 

  14. Behnia, K., Capan, C., Mailly, D., and Etienne, B. (2000) Internal avalanches in a pile of superconducting vortices, Phys. Rev. B 61, R3815–R3818.

    Article  ADS  Google Scholar 

  15. Altshuler, E., Johansen, T.H., Paltiel, J., Jin, P., Bassler, K.E., Ramos, O., Re- iter, G.F., Zeldov, E., and Chu, C.W. (2001) Magnetic vortex piles and avalanche dynamics in superconducting niobium, preprint.

    Google Scholar 

  16. Matsuda, T., Harada, K., Kasai, H., Kamimura, O., and Tonomura, A. (1996) Observation of dynamic interaction of vortices with pinning centers by Lorentz microscopy, Science 271, 1393–1395.

    Article  ADS  Google Scholar 

  17. Gao, P.E., Hauglin, H., Baziljevich, M., iryashenko, E., Gammel, P.L., and Johansen, T.H. (2001) Real time magneto-optical imaging of vortices in superconductors, preprint, cond-mat/0104280.

    Google Scholar 

  18. Olson, C.J., Reichhardt, C., and Nori, F. (1998) Fractal networks, braiding channels, and voltage noise in intermittently flowing rivers of quantized magnetic flux, Phys. Rev. Lett. 80, 2197–2200.

    Article  ADS  Google Scholar 

  19. Bassler, K.E. and Paczuski, M. (1999) Braided rivers and superconducting vortex avalanches, Phys. Rev. Lett. 83, 3965–3968.

    Article  ADS  Google Scholar 

  20. Best, J.L., ed. (1993) Braided Rivers, American Association of Petroleum Geologists.

    Google Scholar 

  21. Sapozhnikov, V.B. and Foufoula-Georgiou, E. (1996) Self-affinity in braided rivers, Water Resour. Res. 32, 1429–1439.

    Article  ADS  Google Scholar 

  22. Bassler, K.E., Paczuski, M., and Altshuler, E. (2000) A simple model for plastic dynamics of a disordered flux line lattice, preprint, cond-mat/0009278.

    Google Scholar 

  23. Higgins, M.J. and Bhattacharya, S. (1996) Varieties of dynamics in a disordered flux-line lattice, Physica C 257, 232–254.

    Article  ADS  Google Scholar 

  24. Olson, C.J., Reichhardt, C., and Nori, F. (1998) Phys. Rev. Lett. 81, 3757–3760.

    Article  ADS  Google Scholar 

  25. Marley, A.C., Higgins, M.J., and Bhattacharya, S. (1995) Flux-flow noise and dynamical transitions in a flux-line lattice, Phys. Rev. Lett. 74, 3029–3032.

    Article  ADS  Google Scholar 

  26. Bassler, K.E., Davidsen, J., and Paczuski, M. (2001) Flux flow noise and braided rivers of superconducting vortices, preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bassler, K.E., Paczuski, M. (2002). Cellular Model of Superconducting Vortex Dynamics. In: Skjeltorp, A.T., Vicsek, T. (eds) Complexity from Microscopic to Macroscopic Scales: Coherence and Large Deviations. NATO Science Series, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0419-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0419-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0634-0

  • Online ISBN: 978-94-010-0419-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics