Physics of Computation: From Classical to Quantum

  • Harry Thomas
Part of the NATO Science Series book series (NAII, volume 63)


In this lecture, I give an introduction into the physics of computation. The emphasis will be on the development of the field, leading from the thermodynamics of computation to reversible computation and to quantum computing, and on the basic physical aspects. The development of the foundations of quantum computing was essentially completed by 1996. I will not cover the vast multitude of applications published after that date. Also the highly interesting areas of quantum cryptography, quantum communications and teleportation remain outside the scope of the present lecture.


Quantum Computer Turing Machine Quantum Algorithm Logical Reversibility Quantum Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feynman, R.P.: Feynman Lectures on Computation;edited by A.J.G. Hey and R.W. Allen, Addison-Wesley, Reading, 1996.Google Scholar
  2. 2.
    Landauer, R.: Computation: A fundamental physical view. Physica Scripta 35 (1987) 88–95ADSCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H.: The thermodynamics of computation - a review. Int. J. Theor. Phys. 21 (1982) 905–94.CrossRefGoogle Scholar
  4. 4.
    Bennett, C.H.: Notes on the history of reversible computation. IBM J. Res. Dev. 32 (1988) 16–23.CrossRefGoogle Scholar
  5. 5.
    Rolf Landauer: Uncertainty Principle and Minimal Energy Dissipation in the Computer. Int. J. Theor. Phys. 21 (1982) 283–297.MATHCrossRefGoogle Scholar
  6. 6.
    Predkin, E., T. Toffoli: Conservative Logic. Int. J. Theor. Phys. 21 (1982) 219–253.CrossRefGoogle Scholar
  7. 7.
    Likharev, K.K.: Classical and Quantum Limitations on Energy Consumption in Computation. Int. J. Theor. Phys. 21 (1982) 311–326.CrossRefGoogle Scholar
  8. 8.
    Benioff, P.A.: Quantum Mechanical Hamiltonian Models of Discrete Processes That Erase Their Own Histories: Application to Turing Machines.Int. J. Theor. Phys. 21 (1982) 177–201.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Feynman, R.P.: Simulating Physics with Computers. Int. J. Theor. Phys. 21 (1982) 467–488.MathSciNetCrossRefGoogle Scholar
  10. 10.
    DiVincenzo, D.P.: Quantum Computation. Science 270 (1995) 255–261.MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Ekert, A., R. Jozsa: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68 (1996) 733–753.MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Barenco, A.: Quantum physics and computers. Contemporary Physics 37 (1996) 375–389.ADSCrossRefGoogle Scholar
  13. 13.
    Bennett, C.H., D.P. DiVincenzo: Quantum information and computation. Nature 404 (2000) 247–254.ADSCrossRefGoogle Scholar
  14. 14.
    Burkard, D., H.-A. Engel, D. Loss: Spintronics and Quantum Dots for Quantum Computing and Quantum Communication. Fortschr. Phys. 48 (2000) 965–986.CrossRefGoogle Scholar
  15. 15.
    Li, M., P. Vitányi: An Introduction to Kolmogorov Complexity and its Applications, Springer-Verlag, New York, 1997, 1993.Google Scholar
  16. 16.
    Maxwell’s Demon. Entropy, Information, Computing;Edited by Harvey S. Leff and Andrew F. Rex, Adam Hilger, Bristol, 1990.Google Scholar
  17. 17.
    Brillouin, L.: Science and Information Theory, Academic Press, New York, 1956.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Harry Thomas
    • 1
  1. 1.Institut für PhysikUniversität BaselBaselSwitzerland

Personalised recommendations