Advertisement

Atomic View of Surfactant Action in Epitaxial Growth: From STM to Computer Simulation

  • J. Camarero
  • A. L. Vázquez De Parga
  • J. E. Prieto
  • J. J. De Miguel
  • R. Miranda
  • C. Slutzky
  • J. Ferrón
  • L. Gómez
Chapter
Part of the NATO Science Series book series (NAII, volume 65)

Abstract

We have combined experiments and computer simulations to visualize the atomic mechanisms behind the surfactant role of Pb, Co, or Cu atoms deposited on Cu(111) covered with a Pb monolayer quickly getting buried beneath the latter. The presence of the surfactant induces a strong buckling in several substrate layers, which, in turn, modifies many of the system’s properties. Atomic diffusion takes place below the surfactant by atomic exchange, while on the clean surface hopping dominates. The activation energy for surface diffusion or the adsorption energies are also significantly altered. These findings have important implications for the synthesis of novel heterostructures such as magnetic superlattices.

Keywords

Scanning Tunneling Microscopy Surface Diffusion Scanning Tunneling Microscopy Image Spin Valve Surfactant Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gradmann, U. and Miiller, J. (1968) Plat ferromagnetic epitaxial Ni48Fesa (111) films of few atomic layers, Phys. Stat. Sol. 27, p. 313.CrossRefGoogle Scholar
  2. 2.
    de Miguel, J.J., Cebollada, A., Gallego, J.M., Miranda, R., Schneider, CM., Schuster, P. and Kirschner, J. (1991) Influence of the growth conditions on the magnetic properties of fee cobalt films—from monolayers to superlattices, J. Magn. Magn. Mater. 91, pp. 1–9.CrossRefGoogle Scholar
  3. 3.
    Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A. and Chazelas, J. (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett 81, pp. 2472–2475.CrossRefGoogle Scholar
  4. 4.
    Cabrera, N. and Vermilyea, D.A. (1958)in The Growth of Crystals from Solution, Turaball, D., ed. Wiley, New York), p. 393.Google Scholar
  5. 5.
    Copel, M., Reuter, M.C., Kaxiras, E. and Tramp, R.M. (1989) Surfactants in epitaxial growth, Phys. Rev. Lett. 63, pp. 632–635.CrossRefGoogle Scholar
  6. 6.
    van der Vegt, H.A., van Pinxteren, H.M., Lohmeier, M., Vlieg, E. and Thornton, J.M.C. (1992) Surfactant-induced layer-by-layer growth of Ag on Ag(111), Phys. Rev. Lett. 88, pp. 3335–3338.CrossRefGoogle Scholar
  7. 7.
    van der Vegt, H. A., Álvarez, J., Torrelles, X., Ferrer, S. and Vlieg, E. (1995) Indium-induced layer-by-layer growth and suppression of twin formation in the homoepi-taxial growth of Cu(111), Phys. Rev. B 52, pp. 17443–17448.CrossRefGoogle Scholar
  8. 8.
    Camarero, J., Spendeler, L., Schmidt, G., Heinz, K., de Miguel, J.J. and Miranda, R. (1994) Surfactant-induced suppression of twin formation during growth of fcc Co/Cu superlattices on Gu(111), Phys. Rev. Lett. 73, pp. 2448–2451.CrossRefGoogle Scholar
  9. 9.
    Camarero, J., Graf, T., de Miguel, J.J., Miranda, R., Kuch, W., Zharnikov, M., Dittschar, A., Schneider, CM. and Kirschner, J. (1996) Surfactant-mediated modification of the magnetic properties of Co /Cu(111) thin films and superlattices, Phys. Rev. Lett. 76, pp. 4428–4431.CrossRefGoogle Scholar
  10. 10.
    Passeggi Jr., M.C.G., Prieto, J.E., Miranda, R. and Gallego, J.M. (2000) A scanning tunnelling microscopy view of the surfactant-assisted growth of iron on Cu(111), Surf. Sci. 462, pp. 45–54.CrossRefGoogle Scholar
  11. 11.
    Zhang, Z. and Lagally, M.G. (1994) Atomic-scale mechanisms for surfactant-mediated layer-by-layer growth in homoepitaxy, Phys. Rev. Lett. 72, pp. 693–696.CrossRefGoogle Scholar
  12. 12.
    Zhang, Z. and Lagally, M.G. (1997) Atomistic processes in the early stages of thin-film growth, Science 276, pp. 377–383.CrossRefGoogle Scholar
  13. 13.
    Carnarero, J., Ferrón, J., Cros, V., Gómez, L., Vazquez de Parga, A.L., Gallego, J.M., Prieto, J.E., de Miguel, J.J. and Miranda, R. (1998) Atomistic mechanism of surfactant-assisted epitaxial growth, Phys. Rev. Lett. 81, pp. 850–853.CrossRefGoogle Scholar
  14. 14.
    de Miguel, J.J., CeboUada, A., Gallego, J.M., Ferrón, J. and S. Ferrer, S. (1988) Quantitative evaluation of the perfection of an epitaxial film grown by vapor-deposition as determined by thermal-energy atom scattering, J. Crystal Growth 88, pp. 442–454.CrossRefGoogle Scholar
  15. 15.
    See, for instance, Steltenpohl, A. and Memmel, N. (2000) Energetic and en-tropic contributions to surface diffusion and epitaxial growth, Phys. Rev. Lett. 84, pp. 1728–1731.CrossRefGoogle Scholar
  16. 16.
    Ehrlich G. and Hudda, F. (1966) Atomic view of surface diffusion: tungsten on tungsten, J. Chem. Phys. 44, pp. 1039–1099.CrossRefGoogle Scholar
  17. 17.
    Schwoebel, R.L. and Shipsey, E.J. (1966) Step motion on crystal surfaces,J. Appl. Phys. 37, pp. 3682–3686.CrossRefGoogle Scholar
  18. 18.
    Henrion, J. and Rhead, G.E. (1972) LEED studies of first stages of deposition and melting of lead on low-index faces of copper, Surf. Set. 29, pp. 20–36.CrossRefGoogle Scholar
  19. 19.
    Müller, S., Prieto, J.E., Rath, C, Hammer, L., Miranda, R. and Heinz, K. (2001) Surfactant-induced surface restructuring: (4x4)-Pb/Cu(111) J. Phys.: Condens. Matter 13, pp. 1793–1803.CrossRefGoogle Scholar
  20. 20.
    Camarero, J., de la Figuera, J., de Miguel, J.J., Miranda, R., Alvarez, J. and Ferrer, S. (2000) Structural characterisation and homoepitaxial growth on Cu(111), Surf. Sci. 459, pp. 191–205.CrossRefGoogle Scholar
  21. 21.
    Prieto, J.E., de la Figuera, J. and Miranda, R. (2000) Surface energetics in a het-eroepitaxial model system: Go/Gu(111), Phys. Rev. B 62, pp. 2126–2133.CrossRefGoogle Scholar
  22. 22.
    Stoyanov, S. and Markov, I. (1982) On the 2D-3D transition in epitaxial thin-film growth, Surf. Sci. 116, pp. 313–337.CrossRefGoogle Scholar
  23. 23.
    Tersoff, J., Denier van der Gon, A.W. and Tromp, R.M. (1994) Critical island size for layer-by-layer growth, Phys. Rev. Lett. 72, pp. 266–269.CrossRefGoogle Scholar
  24. 24.
    Venables, J.A., Spiller, G.D.T. and Hanbücken, M. (1984) Nucleation and Growth of Thin Films, Rep. Prog. Phys. 47, pp. 399–459.CrossRefGoogle Scholar
  25. 25.
    de la Figuera, J., Prieto, J.E., Ocal, C. and Miranda, R. (1993) Scanning-tunnelmg-microscopy study of the growth of cobalt on Cu(111), Phys. Rev. B 47, pp. 13043–13046.CrossRefGoogle Scholar
  26. 26.
    Prieto, J.E., Rath, Ch., Miranda, R. and Heinz, K. (2000) Surfactant action in heteroepitaxy: Growth of Co on (4×4)Pb/Cu(111) studied by LEED and STM, Phys. Rev. B 62, pp. 5144–5149.CrossRefGoogle Scholar
  27. 27.
    de la Figuera, J., Huerta-Garnica, M.A., Prieto, J.E., Ocal, C. and Miranda, R. (1995) Fabrication of magnetic quantum wires by step-flow growth of cobalt on copper surfaces,Appl. Phys. Lett. 66, pp. 1006–1008.CrossRefGoogle Scholar
  28. 28.
    Tomanek, D., Mukherjee, S. and Bennemann, K.H. (1983) Simple theory for the electronic and atomic structure of small clusters, Phys. Rev. B 28, pp. 665–673.CrossRefGoogle Scholar
  29. 29.
    Gómez, L. and Diep, H.T. (1995) Structure and melting behavior of a lead monolayer adsorbed on a copper substrate, Phys. Rev. Lett. 74, pp. 1807–1810.CrossRefGoogle Scholar
  30. 30.
    Ferrón, J., Gómez, L., Gallego, J.M., Camarero, J., Prieto, J.E., Cros, V., Vázquez de Parga, A.L., de Miguel, J.J. and Miranda, R. (2000) Influence of surfactants on atomic diffusion, Surf. Sci. 459, pp. 135–148.CrossRefGoogle Scholar
  31. 31.
    Basset, D.W. and Webber, P.R. (1978) Diffusion of single adatoms of platinum, iridium, and gold on platinum surfaces, Surf. Sci. 70, pp. 520–531; Wrigley, J.D. and Ehrlieh, G. (1980) Surface diffusion by an atomic exchange mechanism, Phys. Rev. Lett. 44, pp. 661-663; Kellogg, G.L. and Feibehnan, P.J. (1990) Surface self-diffusion on Pt(ool) by an atomic exchange mechanism Phys. Rev. Lett. 64, pp. 3143-3146; Feibelman, P.J. (1990) Diffusion path for an Al adatom on Al(001), Phys. Rev. Lett. 65, pp. 729-732.CrossRefGoogle Scholar
  32. 32.
    Camarero, J., de Miguel, J.J., Miranda, R. and Hernando, A. (2000) Thicknessdependent coercivity of ultrathin Co fiIrns grown on Cu(111), J. Phys.: Condens. Matter 12, pp. 7713–7719.CrossRefGoogle Scholar
  33. 33.
    Kuch, W., Dittschar, A., Lin, M.-T., Salvietti, M., Zharnikov, M., Schneider, C.M., Kirschner, J., Camarero, J., de Miguel, J.J. and Miranda, R. (1997) Direct evidence for complete antiferromagnetic coupling between Co films epitaxially grown on Cu(111) using Pb as surfactant, J. Magn. Magn. Mat. 170, pp. L13–LI6.CrossRefGoogle Scholar
  34. 34.
    Egelhoff, Jr., W.F., Chen, P.J., PowelI, C.J., Stiles, M.D., McMichaeI, R.D., Lin, C.-L., Sivertsen, J.M., Judy, J.H., Takano, K. and Berkowitz, A.E. (1996) Growth of giant magnetoresistance spin valves using Pb and Au as surfactants, J. Appl. Phys. 80, pp. 5183–5191.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • J. Camarero
    • 1
  • A. L. Vázquez De Parga
    • 1
  • J. E. Prieto
    • 1
  • J. J. De Miguel
    • 1
  • R. Miranda
    • 1
  • C. Slutzky
    • 2
  • J. Ferrón
    • 2
  • L. Gómez
    • 3
  1. 1.Departamento Física de la Materia Condensada, C-3, and Instituto de Ciencia de Materiales “Nicolás Cabrera”Universidad Autónoma de MadridCantoblancoMadridSpain
  2. 2.INTEC-CONICET, Universidad Nacional del LitoralSanta FeArgentina
  3. 3.Fac. Cs. Exactas e Ingeniería, Univ. Nacional de RosarioInstituto de Física RosarioRosarioArgentina

Personalised recommendations