Skip to main content

Atomistic and Continuum Elastic Effects in Heteroepitaxial Systems

  • Chapter
Book cover Atomistic Aspects of Epitaxial Growth

Part of the book series: NATO Science Series ((NAII,volume 65))

Abstract

We introduce a general method for describing the morphological evolution of coherent heteroepitaxial films based on linear elasticity. The substrate and film are modelled as discrete layers of continuous material whose lateral and vertical extents are measured in discrete atomic-scale units. The force-balance equations are obtained from a variational calculation of a suitably discretized form of the total elastic energy. The continuum limit of these equations and the boundary conditions along straight boundaries reproduce standard results of linear elasticity theory, but the boundary conditions at corners have no such analogue. We apply our methodology to the step-bunching instability on a one-dimensional strained vicinal surface and discuss the effects of epilayer thickness, elastic constants, and the misfit strain on the equilibration of the surface toward the bunched state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bimberg, D., Grundmann, M. and Ledentsov, N.N. (1998) Quantum Dot Heterostructures. Wiley, Chichester, England.

    Google Scholar 

  2. Barnham, K.W.J. and Vvedensky, D.D., eds. (2001) Low-Dimensional Semiconductor Structures: Fundamentals and Device Applications. Cambridge University Press, Cambridge, England.

    Google Scholar 

  3. Burton, W.K., Cabrera, N. and Prank, F.C. (1951) The growth of crystals and the equilibrium structure of their surfaces, Philos. Trans. Roy. Soc. London, Ser. A 243, pp. 299–358.

    Article  Google Scholar 

  4. Ghez, R. and Iyer, S.S. (1988) The kinetics of fast steps on crystal surfaces and its application to the molecular beam epitaxy of silicon, IBM J, Res. Develop. 32, pp. 804–818.

    Article  CAS  Google Scholar 

  5. Venables, J.A. (1973) Rate equation approach to thin film nucleation kinetics, Philos. Mag. 27, pp. 697–738.

    Article  CAS  Google Scholar 

  6. Venables, J.A., SpUler, G.D.T. and Hanbücken, M. (1984) Nucleation and growth of thin films, Rep. Prog. Phys. 47, pp. 399–459.

    Article  Google Scholar 

  7. Weeks, J.D. and Gihner, G.H. (1979) Dynamics of crystal growth, Adv. Chem. Phys. 40, pp. 157–228.

    Article  CAS  Google Scholar 

  8. Madhukar, A. and Ghaisas, S.V. (1988) The nature of molecular-beam epitaxial growth examined via computer simulations, Crit. Rev. Sol. State and Mater. Sci. 14, pp. 1–130.

    Article  CAS  Google Scholar 

  9. Wedensky, D.D., Clarke, S., Hugill, K.J., Myers-Beaghton, A.K. and Wilby, M.R. (1990) Growth kinetics on vicinal (001) surfaces: The solid-on-solid model of molecular-beam epitaxy, in Kinetics of Ordering and Growth at Surfaces, Lagally, M.G., ed. Plenum, New York, pp. 297–311.

    Chapter  Google Scholar 

  10. Metiu, H., Lu, Y.-T. and Zhang, Z.Y. (1992) Epitaxial growth and the art of computer simulations, Science 255, pp. 1088–1092.

    Article  CAS  Google Scholar 

  11. Kang H.C. and Weinberg, W.H. (1989) Dynamic Monte Carlo with a proper energy barrier: Surface diffusion and two-dimensional domain ordering, J. Chem. Phys. 90, pp. 2824–2830.

    Article  CAS  Google Scholar 

  12. Ratsch, C. and Zangwill, A. (1993) Equilibrium theory of the Stranski-Krastanov epitaxial morphology, Surf. Sci. 293, pp. 123–131.

    Article  CAS  Google Scholar 

  13. Ratsch, C., Šmilauer, P., Wedensky, D.D. and Zangwill, A. (1996) Mechanism for coherent island formation during heteroepitaxy, J. Phys. I 6, pp. 575–581.

    Article  CAS  Google Scholar 

  14. Dobbs, H.T., Zangwill, A. and Vvedensky, D.D. (1998) Nucleation and growth of coherent quantum dots: A mean-field theory, in Surface Diffusion Tringides, M., ed. Plenum, New York, pp. 263–275.

    Google Scholar 

  15. Koduvely, H.M. and Zangwill, A. (1999) Epitaxial growth kinetics with interacting coherent islands, Phys. Rev. B 60, pp. R2204–R2207.

    Article  CAS  Google Scholar 

  16. Bauer, E.G. (1958) Phanomenologische theorie der kristallabscheidung an oberflächen I, Z. Kristallogr. 110, pp. 372–394.

    Article  CAS  Google Scholar 

  17. Grabow, M.H. and Gilmer, G.H. (1988) Thin film growth modes, wetting and cluster nucleation, Surf. Sci. 194, pp. 333–346.

    Article  CAS  Google Scholar 

  18. Hara, K., Ikeda, M., Ohtsuki, O., Terakura, K., Mikami, M., Tago, Y. and Oguchi, T. (1989) Molecular dynamics simulations for molecular-beam epitaxy: Overlayer growth pattern in 2-component Lennard-Jones systems, Phys. Rev. B 39, pp. 9476–9485.

    Article  Google Scholar 

  19. Dodson, B,W. (1990) Molecular dynamics modeling of vapor-phase and very-low-energy ion-beam crystal growth processes, Crit. Rev. Sol State and Mater. Sci. 16, pp. 115–130.

    Article  CAS  Google Scholar 

  20. Daruka, I. and Barabasi, A.-L. (1998) Equilibrium phase diagrams for dislocation free self-assembled quantum dots, AppL Phys. Lett. 72, pp. 2102–2104.

    Article  CAS  Google Scholar 

  21. Makeev, M.A. and Madhukar, A. (2001) Simulations of atomic level stresses in systems of buried Ge/Si islands, Phys. Rev. Lett. 86, pp. 5542–5545.

    Article  CAS  Google Scholar 

  22. Wadley, H.N.G., Zhou, A.X., Johnson, R.A. and Neurock, M. (2001) Mechanisms, models and methods of vapor deposition, Prog. Mater. Sci. 46, pp. 329–377.

    Article  CAS  Google Scholar 

  23. Madhukar, A. (1983) Far from equilibrium vapour phase growth of lattice matched III-V compound semiconductor interfaces: Some basic concepts and Monte-Carlo computer simulations Surf. Sci. 132, pp. 344–374.

    Article  CAS  Google Scholar 

  24. Tersoff,_J., Johnson, M.D. and Orr, B.G. (1997) Adatom densities on GaAs: Evidence for near-equilibrium growth, Phys. Rev. Lett. 78, pp. 282–285.

    Article  CAS  Google Scholar 

  25. Eaglesham, D.J. and Cerullo, M. (1990) Dislocation-free Stransli-Krastanow growth of Ge on Si(100), Phys. Rev. Lett. 64, pp. 1943–1946.

    Article  CAS  Google Scholar 

  26. Guha, S., Madhukar, A. and Rajkumar, K.C. (1990) Onset of incoherency and defect introduction in the initial stages of molecular-beam epitaxial growth of highly strained InxGa1-x As on GaAs(100), Appl. Phys. Lett. 57, pp. 2110–2112.

    Article  CAS  Google Scholar 

  27. Seifert, W., Carlsson, N., Miller, M., Pistol, M.-E., Samuelson, L. and Wallenberg, L.R. (1996) In situ growth of quantum dot structures by the Stranski-Krastanow growth mode, Prog. Crystal Growth and Charact. 33, pp. 423–471.

    Article  CAS  Google Scholar 

  28. Joyce, B.A. and Vvedensky, D.D. (2002) Mechanisms and anomalies in the formation of InAs-GaAs(001) quantum dot structures, (these proceedings).

    Google Scholar 

  29. Tersoff, J. and LeGoues, F.K. (1994) Competing relaxation mechanisms in strained systems, Phys. Rev. Lett. 72, pp. 3570–3573.

    Article  CAS  Google Scholar 

  30. Spencer, B.J., Voorhees, P.W. and Davis, S.H. (1993) Morphological instability in epitaxially strained dislocation-free solid films: Linear stability theory, J. Appl. Phys. 73, pp. 4955–4970.

    Article  CAS  Google Scholar 

  31. Spencer, B.J., Davis, S.H. and Voorhees, P.W. (1993) Morphological instability in epitaxially strained dislocation-free solid films: Nonlinear evolution, Phys. Rev. B 47, pp. 9760–9777.

    Article  Google Scholar 

  32. Landau L.D. and Li&chitz, E.M. (1970) Theory of Elasticity. Pergamon, Oxford, England.

    Google Scholar 

  33. Schindler, A.C., Vvedensky, D.D., Gyure, M.F., Caflisch, R.E., Connell, C. and Simrns, G.D. (2002) Theory of strain relaxation in heteroepitaxial systems, Phys. Rev. B. (to be published).

    Google Scholar 

  34. Orr,_B.G., Kessler, D., Snyder, C.W. and Sander, L. (1992) A model for straininduced roughening and coherent island growth, Europhys. Lett. 19, pp. 33–38.

    Article  CAS  Google Scholar 

  35. Saito, Y., Uemura, H. and Uwaha, M. (2001) Two-dimensional elastic lattice model with spontaneous stress, Phys. Rev. B 63, art. no. 045422.

    Article  Google Scholar 

  36. Marchenko, V.I. and Parshin A.Ya. (1980) Elastic properties of crystal surfaces, Sov. Phys. JETP 52, pp. 129–131.

    Google Scholar 

  37. Marchenko, V.I. (1981) Possible structures and phase-transitions on the surface of crystals, JETP Lett. 33, pp. 381–383.

    Google Scholar 

  38. Alerhand, O.L., Vanderbilt, D., Meade, R.D. and Joannopoulos, J.D. (1988) Spontaneous formation of stress domains on crystal surfaces, Phys. Rev. Lett. 61, pp. 1973–1976.

    Article  CAS  Google Scholar 

  39. Pimpinelli, A. and Villain J. (1998) Physics of Crystal Growth. Cambridge University Press, Cambridge, England.

    Book  Google Scholar 

  40. Tersoff, J., Phang, Y.H., Zhang, Z. and LagaUy, M.G. (1995) Step-bunching instability of vicinal surfaces under stress, Phys. Rev. Lett. 75, pp. 2730–2733.

    Article  CAS  Google Scholar 

  41. Kandel, D. and Weeks, J.D. (1992) Step bunching as a chaotic pattern-formation process, Phys. Rev. Lett. 69, pp. 3758–3761.

    Article  Google Scholar 

  42. Kandel, D. and Weeks, J.D. (1994) Theory of impurity-induced step bunching, Phys. Rev. B 49, pp. 5554–5564.

    Article  CAS  Google Scholar 

  43. Frohn, J., Giesen, M., Poensgen, M., Wolf, J.F. and Ibach, H. (1991) Attractive interaction between steps, Phys. Rev. Lett. 67, pp. 3543–3546.

    Article  CAS  Google Scholar 

  44. Redfield, A.C. and Zangwill, A. (1992) Attractive interactions between steps, Phys. Rev. B 46, pp. 4289–4291.

    Article  Google Scholar 

  45. Duport, C, Nozieres, P. and Villain, J. (1995) New instability in molecular-beam epitaxy, Phys. Rev. Lett. 74, pp. 134–137.

    Article  CAS  Google Scholar 

  46. Liu, F., Tersoff, J. and Lagally, M.G. (1998) Self-organization of steps in growth of strained films on vicinal substrates, Phys. Rev. Lett. 80, pp. 1268–1271.

    Article  CAS  Google Scholar 

  47. Politi, P., Grenet, G., Marty, A., Ponchet, A. and Villain, J. (2000) Instabilities in crystal growth by atomic or molecular beams, Phys. Rep. 324, pp. 271–404.

    Article  CAS  Google Scholar 

  48. Kukta, R.V. and Bhattacharya, K. (1999) A three-dimensional model of step flow mediated crystal growth under the combined influences of stress and diffusion, Thin Solid Films 357, pp. 35–39.

    Article  CAS  Google Scholar 

  49. Ozdemir, M. (1999) The morphology of crystalline surfaces in the presence of attractive step interactions, J. Phys.: Condens. Matter 11, pp. 1915–1925.

    Article  CAS  Google Scholar 

  50. Ratsch, C, Gyure, M.F., Chen, S., Kang, M. and Vvedensky, D.D. (2000) Fluctuations and scaling in aggregation phenomena, Phys. Rev. B 61, pp. R10598–R10601.

    Article  CAS  Google Scholar 

  51. Petersen, M., Ratsch, C, Caflisch, R.E. and Zangwill, A. (2001) Level set approach to reversible epitaxial growth, Phys. Rev. E 64, art. no. 061602.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schindler, A.C., Vvedensky, D.D., Gyure, M.F., Simms, G.D., Caflisch, R.E., Connell, C. (2002). Atomistic and Continuum Elastic Effects in Heteroepitaxial Systems. In: Kotrla, M., Papanicolaou, N.I., Vvedensky, D.D., Wille, L.T. (eds) Atomistic Aspects of Epitaxial Growth. NATO Science Series, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0391-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0391-9_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0675-3

  • Online ISBN: 978-94-010-0391-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics