Skip to main content

Ab Initio Modeling of Free Energy Profiles in Thermally Activated Processes

  • Chapter
Atomistic Aspects of Epitaxial Growth

Part of the book series: NATO Science Series ((NAII,volume 65))

  • 418 Accesses

Abstract

The quantitative modeling of many surface processes, such as diffusion or chemical reactions, requires accurate knowledge of free energy profiles. The need to go beyond the internal energy is especially important in entropy-controlled processes which may happen at both high (the thermally-activated regime) and low (the quantum tunneling regime) temperatures. We present results for a thermally-activated process, namely, the formation of the first intermediate in the methanol-to-gasoline process, catalyzed by acidic zeolites. At high temperatures of 700 K, the entropic contribution cannot be correctly evaluated in the harmonic approximation and we use ab initio thermodynamic integration within density functional theory. We find that, at reaction temperatures, the entropic contribution qualitatively alters the free energy profile. Different transition states are found from the internal energy and free energy profiles. The entropic contribution varies significantly along the reaction coordinate and is responsible for stabilizing the products and for lowering the energy barrier. An outlook is given for a proper treatment of entropically-controlled processes in both the thermally-activated and quantum regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for instance, Benett, G.H. (1977) Algorithms for chemical computations, ACS series 46, (ed. Christofferson, R.E.), p. 63.

    Google Scholar 

  2. Dellago, C, Bolhuis, P.G., and Chandler, D. (1998) Efficient transition path sampling: Application to Lennard-Jones cluster rearrangements, J. Chew,. Phys. 108, pp. 9236–9245.

    Article  CAS  Google Scholar 

  3. See, for instance, Payne, M.C., Teter, M.P., Alan, D.C, Arias, T.A. and Joannopoulos, J.D. (1992) Iterative minimization techniques for ab initio total-energy calculations, Rev. Mod. Phys., 64, pp. 1045–1097.

    Article  CAS  Google Scholar 

  4. Meisel, S.L., McCullogh, J.P., Lechthaler, C.H. and Weisz, P.B. (1976) Chem. Technol, 6, 86.

    CAS  Google Scholar 

  5. Carter, E.A., Ciccotti, G. and Hynes, J.T. (1989) Constrained reaction coordinate dynamics for the simulation of rare events, Chem. Phys. Lett, 156, pp. 472–477.

    Article  CAS  Google Scholar 

  6. Sprik, M. and Ciccotti, G. (1998) Free energy from constrained molecular dynamics, J. Ghetn. Phys., 109, pp. 7737–7744.

    CAS  Google Scholar 

  7. See, for instance, Boero, M., Parrinello, M., and Terakura, K. (1998) First principles molecular dynamics study of Ziegler-Natta heterogeneous catalysis, J. Am. Chem. Soc., 120, pp. 2746–2752.

    Article  CAS  Google Scholar 

  8. Shah, R., Gale, J.D. and Payne, M.C. (1997) In situ study of reactive intermediates of methanol in zeolites from first principles calculations, J. Phys. Chem., B 101, pp. 4787–4797.

    Google Scholar 

  9. Stich, I., Gale, J.D., Terakura, K. and Payne, M.C. (1998) Dynamical observation of the catalytic activation of methanol in zeolites, Chem. Phys. Lett., 283, pp. 402–408.

    Article  CAS  Google Scholar 

  10. Stich, I., Gale, J.D., Terakura, K. and Payne, M.C. (1999) Role of the zeolitic environment in catalytic activation of methanol, J. Am. Chem. Soc, 121, pp. 3292–3302.

    Article  CAS  Google Scholar 

  11. Hytha, M., Štich, I., Gale, J.D., Terakura, K. and Payne, M.C. (2001) Thermodynamics of catalytic formation of dimethyl ether from methanol in acidic zeolites, Chem. Eur. J., 7, pp. 2521–2527.

    Article  CAS  Google Scholar 

  12. Blaszkowski, S.R. and van Santen, R.A. (1996) The mechanism of dimethyl ether formation fro’m methanol catalyzed by zeolitic protons, J. Am. Chem. Soc, 118, pp. 5152–5153.

    Article  CAS  Google Scholar 

  13. Ab initio MD simulations for ZSM-5 on a time-scale of the order of ~1 ps have already been performed [9, 10]. Simulations for the time-scales relevant for the present simulation should be possible in due course.

    Google Scholar 

  14. Vaughan, P.A. (1966) Crystal structure of zeolite ferrierite, Acta Cryst., 21, 983.

    Article  CAS  Google Scholar 

  15. See, for instance, Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J. and Fiolhais, C. (1992) Atoms, molecules, solids, and surfaces-applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 46, pp. 6671–6687.

    Article  CAS  Google Scholar 

  16. Shah, R., Payne, M.C, Lee, M.-H. and Gale, J.D. (1996) Understanding the catalytic behavior of zeolites: A first-principles study of the adsorption of methanol, Science, B 271, pp. 1395–1397.

    Article  CAS  Google Scholar 

  17. A computer graphics animation of the simulation can be downloaded from: http://kf-lin.elf.stuba.sk/ccms/index.html http://kf-lin.elf.stuba.sk/ccms/index.html.

  18. See, for instance, Tajima, N., Tsuneda, T., Toyama, F. and Hirao, K. (1998) A new mechanism for the first carbon-carbon bond formation in the MTG process: A theoretical study, J, Am. Chem. Soc. 120, pp. 8222–8229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Štich, I., Hytha, M., Gale, J.D., Terakura, K., Payne, M.C. (2002). Ab Initio Modeling of Free Energy Profiles in Thermally Activated Processes. In: Kotrla, M., Papanicolaou, N.I., Vvedensky, D.D., Wille, L.T. (eds) Atomistic Aspects of Epitaxial Growth. NATO Science Series, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0391-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0391-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0675-3

  • Online ISBN: 978-94-010-0391-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics