Growth and Ion Erosion: Two Methods for Patterning Surfaces

  • F. Buatier De Mongeot
  • C. Boragno
  • U. Valbusa
Part of the NATO Science Series book series (NAII, volume 65)


In metal surfaces a build-up of a regular pattern during ion sputtering is produced by two different mechanisms that produce a similar surface instability: the surface curvature dependence of the sputtering yield and the presence of an extra energy barrier whenever diffusing adatoms try to descend step edges. By tuning the competition between erosion- and diffusion-induced surface re-organization, it is possible to investigate new phenomena like the rotation of ripple orientation on an anisotropic fcc(110) substrate and the pattering of a fcc(001) substrate from a mound-like to a ripple structure. Similar phenomena occur in the case of homoepitaxial growth. In the multilayer regime [Ag on Ag(110)] the rotation of a ripple-like pattern was observed with changing surface temperature. The phenomenon is related to the peculiar hierarchy of inter- and intra-layer diffusion barriers present on the anisotropic Ag(110) substrate. Homoepitaxial growth on Ag(001) in the multilayer regime is studied with STM. The height, lateral distance, and order of the mound-like structures change with the deposition temperature. The surface morphologies obtained after sputtering and homoepitaxial deposition of Ag(001) have strong similarities. The general approach considers sputtering as the negative of homoepitaxial deposition, i.e. as a deposition of vacancies which can eventually have an asymmetry in their diffusivities. This paper shows that this picture is oversimplified because the dominant effect of ion sputtering is the formation of clusters of adatoms and vacancies.


Deposition Temperature Patterning Surface Vacancy Cluster Interface Width Ripple Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Navez, M., Sella, C. and Chaperot, D. (1962) Microscopie electronique etude de lattaque du verre par bombardement ionique, Compt. Rend. 254, p, 240.Google Scholar
  2. 2.
    Bradley, R.M. and Harper, J.M.E, (1988) Theory of ripple topography induced by ion bombardment, J. Vac. Scl. Technol. A 6, pp. 2390–2395.CrossRefGoogle Scholar
  3. 3.
    Eklund, E.A., Bruinsma, R., Rudnick, J. and Williams, R.S. (1991) Submicron-scale surface roughening induced by ion bombardment, Phys. Rev. Lett 67, pp. 1759–1762.CrossRefGoogle Scholar
  4. 4.
    Chason, E., Mayer, T.M., Kellerman, B.K., Mellroy, D.T. and Howard, A.J. (1994) Roughening instability and evolution of the Ge(001) surface during ion sputtering, Phys. Rev. Lett. 72, pp. 3040–3043.CrossRefGoogle Scholar
  5. 5.
    Rusponi, S., Boragno, C. and Valbusa, U. (1997) Ripple structure on Ag(110) surface induced by ion sputtering, Phys. Rev. Lett. 78, pp. 2796–2798.CrossRefGoogle Scholar
  6. 6.
    Rusponi, S., Costantini, G., Boragno, C. and Valbusa, U. (1998) Scaling laws of the ripple morphology on Cu(110) Phys. Rev. Lett. 81, pp. 4184–4187.CrossRefGoogle Scholar
  7. 7.
    Rusponi, S., Costantini, G., Boragno, C. and Valbusa, U. (1998) Ripple wave vector rotation in anisotropic crystal sputtering, Phys. Rev. Lett 81, pp. 2735–2738.CrossRefGoogle Scholar
  8. 8.
    Rusponi, S., Costantini, G., Buatier de Mongeot, F., Boragno, C. and Valbusa, U. (1999) Patterning a surface on the nanometric scale by ion sputtering, Appl. Phys. Lett. 75, pp. 3318–3320.CrossRefGoogle Scholar
  9. 9.
    Buatier de Mongeot, F., Costantini, G., Boragno, C. and Valbusa, U. (2000) Ripple rotation in multilayer homoepitaxy, Phys. Rev. Lett. 84, pp. 2445–2448.CrossRefGoogle Scholar
  10. 10.
    Costantini, G., Buatier de Mongeot, F., Boragno C. and Valbusa, U. (2000) Temperature dependent reentrant smooth growth in Ag(001) homoepitaxy, Surf. Sci. 459, pp. L487–L492.CrossRefGoogle Scholar
  11. 11.
    Stoldt, C.R., Caspersen, K.J., Bartelt, M.C., Jenks, C.J., Evans, J.W. and Thiel, P.A. (2000) Using temperature to tune film roughness: Nonintuitive behavior in a simple system, Phys. Rev. Lett. 85, pp. 800–803.CrossRefGoogle Scholar
  12. 12.
    Costantini, G., Buatier de Mongeot, F., Boragno, C. and Valbusa, U. (2001) Is ion sputtering always a “negative homoepitaxial deposition”?, Phys. Rev. Lett. 88, pp. 838–841.CrossRefGoogle Scholar
  13. 13.
    Ernst, H.-J., Fabre, F., Folkerts, R. and Lapujoulade, J. (1994) Observation of a growth instability during low temperature molecular beam epitaxy, Phys. Rev. Lett. 72, pp. 112–115.CrossRefGoogle Scholar
  14. 14.
    Zuo, J.K. and Wendelken, J.F. (1997) Evolution of mound morphology in reversible homoepitaxy on Cu(100), Phys. Rev. Lett. 78, pp. 2791–2794.CrossRefGoogle Scholar
  15. 15.
    Stroscio, J.A., Pierce, D.T., Stiles, M.D., Zangwill, A. and Sander, L.M. (1995) Coarsening of unstable surface features during Fe(001) homoepitaxy, Phys. Rev. Lett. 75, pp. 4246–249.CrossRefGoogle Scholar
  16. 16.
    Thümer, K., Koch, R., Weber, M. and Rieder, K.H. (1995) Dynamic evolution of pyramid structures during growth of epitaxial Fe (001 ) films, Phys. Rev. Lett. 75, pp. 1767–1770.CrossRefGoogle Scholar
  17. 17.
    Elliott, W.C., Miceli, P.F., Tse, T. and Stephens, P.W. (1996) Temperature and orientation dependence of kinetic roughening during homoepitaxy: A quantitative X-ray-scattering study of Ag, Phya. Rev. B 54, pp. 17938–17942.CrossRefGoogle Scholar
  18. 18.
    Alvarez, J., Lundgren, E., Torrelles, X. and Ferrer, S. (1998) Determination of scaling exponents in Ag(100) homoepitaxy with x-ray diffraction profiles, Phys. Rev. B 57, pp. 6325–6328.CrossRefGoogle Scholar
  19. 19.
    Siegert, M. and Plischke, M. (1994) Slope selection and coarsening in molecular-beam epitaxy, Phys. Rev. Lett. 73, pp. 1517–1520.CrossRefGoogle Scholar
  20. 20.
    Amar, J.G. and Family, F. (1996) Effects of crystalline microstructure on epitaxial growth, Phys. Rev. B 54, pp. 14742–14753.CrossRefGoogle Scholar
  21. 21.
    Murty, M.V.R., Curcic, T., Judy, A., Cooper, B.H., Woll, A.R., Brock, J.D., Kycia, S. and Headrick, R.L. (1998) X-ray scattering study of the surface morphology of Au(111) during Ar+ ion irradiation, Phys. Rev. Lett. 80, pp. 4713–4716.CrossRefGoogle Scholar
  22. 22.
    Bartelt, M.C. and Evans, J.W. (1999) Temperature dependence of kinetic roughening during metal(100) homoepitaxy: Transition between’ mounding’ and smooth growth, Surf. Sci. 423, pp. 189–207.CrossRefGoogle Scholar
  23. 23.
    Costantini, G., Rusponi, S., Gianotti, R., Boragno, C. and Valbusa, U. (1998) Temperature evolution of nanostructures induced by Ar+ sputtering on Ag(001), Surf. Sci. 416, pp. 245–254.CrossRefGoogle Scholar
  24. 24.
    Girard, J.C., Samson, Y., Gautier, S., Rousset, S. and Klein, J. (1994) STM study of the nucleation and annealing of ion-bombardment-induced defects on Cu(100), CU(100) Surf. Sci. 302, pp. 73–80.CrossRefGoogle Scholar
  25. 25.
    Naumann, J., Osing, J., Quinn, A.J. and Shvets, I.V. (1997) Morphology of sputtering damage on Cu(111) studied by scanning tunneling microscopy, Surf. Sci. 388, pp. 212–219.CrossRefGoogle Scholar
  26. 26.
    Michely, T. and Comsa, G. (1991) Temperature dependence of the sputtering morphology of Pt(111), Surf. Sci. 256, pp. 217–226.CrossRefGoogle Scholar
  27. 27.
    Ernst, H.J. (1997) The pattern formation during ion bombardment of Cu(001) investigated with helium atom beam scattering, Surf. Sci. 383, pp. L755–L759.CrossRefGoogle Scholar
  28. 28.
    Murty, M.V.R., Cowles, B. and Cooper, B.H. (1998) Surface smoothing during sputtering: mobile vacancies versus adatom detachment and diffusion, Surf. Sci. 415, pp. 328–335.CrossRefGoogle Scholar
  29. 29.
    Michely, T. and Teichert, C. (1994) Adatom yields, sputtering yields, and damage patterns of single-ion impacts on Pt(111), Phys. Rev. B P50, pp. 11156–11166.CrossRefGoogle Scholar
  30. 30.
    Pai, W.W., Swan, A.K., Zhang, Z.Y. and Wendelken, J.F. (1997) Island diffusion and coarsening on metal (100) surfaces, Phys. Rev. Lett. 79, pp. 3210–3213.CrossRefGoogle Scholar
  31. 31.
    Hontinfinde, F. and Ferrando, R. (2001) Ripple formation and rotation in the growth of Ag/Ag(110): A microscopic view, Phys. Rev. B 63, art. no. 121403.CrossRefGoogle Scholar
  32. 32.
    Degiorgi, C, Aihemaiti, P., Buatier de Mongeot, F., Boragno, C, Ferrando, R. and Valbusa, U. (2001) Submonolayer homoepitaxial growth on Ag(110), Surf. Sci. 487, pp. 49–54.CrossRefGoogle Scholar
  33. 33.
    Costantini, G., Buatier de Mongeot, F., Rusponi, S., Boragno, C, Valbusa, U., Vattuone, L., Burghaus, U., Savio, L. and Rocca, M. (2000) Tuning surface reactivity by in situ surface nanostructuring, J. Chem. Phys. 112, pp. 6840–6843.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • F. Buatier De Mongeot
    • 1
  • C. Boragno
    • 1
  • U. Valbusa
    • 1
  1. 1.INFM Unità di Genova and Dipartimento di FisicaUniversità di GenovaGenovaItaly

Personalised recommendations