Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 65))

  • 416 Accesses

Abstract

Attractive dispersion forces, active between incident atoms and the substrate, cause preferential arrival of atoms on protruding parts on growing film surfaces. This phenomenon, which we refer to as “steering”, can give rise to significant flux redistribution. The lack of incident flux homogeneity, disregarded so far in growth studies, contributes to enhanced roughness of the growth front. This principal disadvantage can be turned around. In a quite narrow window of polar angles of incidence, it becomes possible to fabricate one-dimensional arrays of ripples oriented perpendicular to the plane of incidence. Several aspects of the mechanism, as well as an application of one-dimensional magnetic aggregates, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Poelsema, B. and Comsa, G. (1989) Scattering of Thermal Energy Atoms. Springer, Berlin.

    Book  Google Scholar 

  2. Gomez, L.J., Bourgeal, S., Ibanez, J. and Salmeron, M. (1985) He scattering study of the nucleation and growth of Cu(100) from its vapor, Phys. Rev. B 31, pp. 2551–2553.

    Article  CAS  Google Scholar 

  3. Ernst, H.-J., Fabre, F. and Lapujoulade, J. (1992) Growth of Cu on Gu(l00), Surf. Sci. 275, pp. L682–L684.

    Article  CAS  Google Scholar 

  4. Van der Vegt, H.A., Breeman, M., Ferrer, S., Etgens, V.H., Torrelles, X., Fajardo, P. and Vlieg, E. (1995) Indium-induced lowering of the Schwoebel barrier in the homoepitaxial growth of Cu(100), Phys. Rev. B 51, pp. 14806–14809.

    Article  Google Scholar 

  5. Jorritsma, L.C. (1997) Growth anisatropies in Cu(001) homoepitaxyPh.D.-Thesis, University of Twente, Enschede

    Google Scholar 

  6. Hecht, E. and Zajac, A. (1979) Optics. Addison Wesley, Reading, MA.

    Google Scholar 

  7. Jorritsma, L.C, Bijnagte, M., Rosenfeld, G. and Poelsema, B. (1997) Growth anisotropy and pattern formation in metal epitaxy, Phys. Rev. Lett. 78, pp. 911–914.

    Article  CAS  Google Scholar 

  8. Ladder, J.C, De Haan, P. and Van Kranenburg, H. (1993) Giant magnetoresistance in obliquely eoevaporated Co-Ag films, J. Magn. Magn. Mat. 128, pp. 219–228.

    Article  Google Scholar 

  9. Park, Y., Fullerton, E.E. and Bader, S.D. (1995) Growth induced uniaxial in-plane magnetic anisotropy for ultrathin Fe deposited on Mg(001) by oblique incidence molecular beam epitaxy, Appl. Phys. Lett. 66, pp. 2140–2142

    Article  CAS  Google Scholar 

  10. Dirks, A.G. and Leamy, H.J. (1977) Columnar microstructure in vapor-deposited thin films, Thin Solid Films 47, pp. 219–233.

    Article  CAS  Google Scholar 

  11. Salas, F.H. Alameda, J.M. Carmona, F. Alvarez-Prado, L.M., Morales, R. and Perez, G.T. (1996) Effects of the initial stages of film growth on the magnetic anisotropy of obliquely deposited cobalt thin films, J. Magn. Magn. Mat. 154, pp. 249–253.

    Article  Google Scholar 

  12. Sanders, D.E. and DePristo, A.E. (1991) Metal/metal homo-epitaxy on fcc(001) surfaces: Is there transient mobility of adsorbed atoms?, Surf. Sci. 254, pp. 341–353.

    Article  CAS  Google Scholar 

  13. Sanders, D.E., Halstead, D.M. and DePristo, A.E. (1992) Metal/metal homoepitaxy on fcc(111) and fcc(00l) surfaces: Deposition and scattering for small islands, J. Vac. Sci. Technol. A 10, pp. 1986–1992.

    Article  CAS  Google Scholar 

  14. Van Dijken, S. (2000) Pattern formation and magnetic anisotropy in thin metal films PhD Thesis, University of Twente, Enschede.

    Google Scholar 

  15. Van Dijken, S., Jorritsma, L.C. and Poelsema, B. (1999) Steering-enhanced roughening during metal deposition at grazing incidence, Phys. Rev. Lett. 82, pp. 4038–4041.

    Article  Google Scholar 

  16. Jackson, D.P. (1972) Interatomic Potentials and Simulations of Lattice Defects. Plenum, New York.

    Google Scholar 

  17. Montalenti, F. and Voter, A., private communication.

    Google Scholar 

  18. Berger, A., Linke, U. and Oepen, H.P. (1992) Symmetry-induced uniaxial anisotropy in ultrathin epitaxial cobalt films grown on Cu(1113), Phys. Rev. Lett. 68, pp. 839–842.

    Article  CAS  Google Scholar 

  19. Chen, J. and Erskine, J.L. (1992) Surface step-induced magnetic anisotropy in thin epitaxial Fe-fihns on W(001), Phys. Rev. Lett. 68, pp. 1212–1215.

    Article  CAS  Google Scholar 

  20. Albrecht, M., Furubayashi, T., Przybylski, M., Korecki, J. and Gradmann, U. (1992) Magnetic step anisotropies, J. Magn. Magn. Mat. 113, pp. 207–220.

    Article  CAS  Google Scholar 

  21. Chuang, D.S., Ballentine, C.A. and O’Handley, R.C. (1994) Surface and step magnetic anisotropy, Phys. Rev. B 49,pp. 15084–15095

    Article  Google Scholar 

  22. Kawakami, K.W., Bowen, M.O., Choi, H.J., Escorcia-Aparicio, E.J. and Qiu, Z.Q. (1999) Effect of atomic steps on the magnetic anisotropy in vicinal Co/Cu(001), Phys. Rev. B 58, pp. R5924–R5927

    Article  Google Scholar 

  23. Kawakami, K.W., Bowen, M.O., Choi, H.J., Escorcia-Aparicio, E.J. and Qiu, Z.Q. (1999) Step induced magnetic anisotropy in Co/stepped Cu(001) as a function of step density and Cu step decoration, J. Appl. Phys. 85, pp. 4955–4957.

    Article  CAS  Google Scholar 

  24. Oepen, H.P., Schneider, CM., Chuang, D.S., Ballentine, C.A. and O’Handley, R.C (1993) Magnetic anisotropy in epitaxial Co/Cu(1113), J. Appl. Phys. 73, pp. 6186–6188.

    Article  CAS  Google Scholar 

  25. Krams, P., Hillebrands, B., Güntherodt G. and Oepen, H.P. (1994) Magnetic anisotropies of ultrathin Co films on Cu(1113) substrates, Phys. Rev. B 4, pp. 3633–3636.

    Article  Google Scholar 

  26. Knorr, T.G. and Hoffmann, R.W. (1959) Dependence of geometric magnetic anisotropy in thin iron films, Phys. Rev. 113, pp. 1039–1046.

    Article  Google Scholar 

  27. Hegeman, P.E., (1998) Morphology of thin Co-films on the (001) surfaces of Cu, Si and Ge PhD Thesis, University of Twente, Enschede.

    Google Scholar 

  28. Weber, W., Back, C.H., Bischof, A., Pescia, D. and Allenspach, R. (1995) Magnetic switching in cobalt fiIms by adsorption of copper, Nature 374, pp. 788–790.

    Article  CAS  Google Scholar 

  29. Weber, W., Back, C.H., Ramsperger, U., Vaterlaus, A. and Allenspach, R. (1995) Submonolayers of adsorbates on stepped Co/Cu(00l): Switching of the easy axia, Phys. Reu. B 52, pp. R14400–R14403.

    Article  CAS  Google Scholar 

  30. Wulfhekel, W., Knappmann, S. and Oepen, H.P. (1996) Magnetic anisotropy in Co/Cu(1117): Temperature dependence, J. Magn. Magn. Mat. 163, pp. 267–276

    Article  CAS  Google Scholar 

  31. Rettori, A., Trallori, L., Pini, M.G., Stamm, C., Wursch, Ch., Egger, S. and Pescia, D. (1998) Shifted magnetization curves in ultrathin Co fiIms on stepped Cu(100), IEEE Transactions on Magnetics 34, pp. 1195–1197.

    Article  CAS  Google Scholar 

  32. Cowbum, R.P., Gray, S.J. and Bland, J.A.C. (1997) Multijump magnetic switching in in-plane magnetized ultrathin epitaxial Ag/Fe/ Ag(001) films, Phys. Rev. Lett. 79, pp. 4018–4021.

    Article  Google Scholar 

  33. Schmid, A.K. and Kirschner, J. (1992) In situ observation of epitaxial growth of Co thin films on Cu(00l) Ultramicroscopy 42-44, pp. 483–489.

    Article  CAS  Google Scholar 

  34. Chambliss, D.D. and Johnson, K.E. (1994) Nucleation with a critical cluster size of zero: Submonolayer Fe inclusions in Cu(00l), Phys. Reu. B 50, pp. 5012–5015.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Poelsema, B., van Dijken, S. (2002). Steering Epitaxial Growth. In: Kotrla, M., Papanicolaou, N.I., Vvedensky, D.D., Wille, L.T. (eds) Atomistic Aspects of Epitaxial Growth. NATO Science Series, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0391-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0391-9_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0675-3

  • Online ISBN: 978-94-010-0391-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics