Skip to main content

Second Layer Nucleation and the Shape of Wedding Cakes

  • Chapter
Atomistic Aspects of Epitaxial Growth

Part of the book series: NATO Science Series ((NAII,volume 65))

Abstract

The rate of second layer nucleation—the formation of a stable nucleus on top of a two-dimensional island—determines both the conditions for layer-by-layer growth, and the size of the top terrace of multilayer mounds in three-dimensional homoepitaxial growth. It was recently shown that conventional mean-field nucleation theory overestimates the rate of second layer nucleation by a factor that is proportional to the number of times a given site is visited by an adatom during its residence time on the island. In the presence of strong step-edge barriers this factor can be large, leading to a substantial error in previous attempts to experimentally determine barrier energies from the onset of second layer nucleation. In the first part of the paper simple analytic estimates of second layer nucleation rates based on a comparison of the relevant time scales will be reviewed. In the main part the theory of second layer nucleation is applied to the growth of multilayer mounds in the presence of strong but finite step-edge barriers. The shape of the mounds is obtained by numerical integration of the deterministic evolution of island boundaries, supplemented by a rule for nucleation in the top layer. For thick films the shape converges to a simple scaling solution. The scaling function is parametrized by the coverage θc of the top layer, and takes the form of an inverse error function cut off at θc. The surface width of a film of thickness d is. Finally, we show that the scaling solution can be derived also from a continuum growth equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ehrlich G. and Hudda, F. (1966) Atomic view of surface diffusion: tungsten on tungsten, J. Chem. Phys. 44, pp. 1039–1099.

    Article  CAS  Google Scholar 

  2. Schwoebel, R.L. and Shipsey, E.J. (1966) Step motion on crystal surfaces, J. Appl. Phya. 37, pp. 3682–3686.

    Article  CAS  Google Scholar 

  3. Tersoff, J., Denier van der Gon, A.W. and Tromp, R.M. (1994) Critical island size for layer-by-layer growth, Phys. Rev. Lett. 72, pp. 266–269.

    Article  CAS  Google Scholar 

  4. Villain, J. (1991) Continuum models of crystal-growth from atomic-beams with and without desorption, J. Phys. I (France) 1, pp. 19–42.

    Article  Google Scholar 

  5. Thürmer, K., Koch, R., Weber, M. and Rieder, K.H. (1995) Dynamic evolution of pyramid structures during growth of epitaxial Fe (001) Films, Phys. Rev. Lett. 75, pp. 1767–1770.

    Article  Google Scholar 

  6. Stroscio, J.A., Pierce, D.T., Stiles, M.D., Zangwill, A. and Sander, L.M. (1995) Coarsening of unstable surface features during Fe(001) homoepitaxy, Phys. Rev. Lett. 75, pp. 4246–4249.

    Article  CAS  Google Scholar 

  7. Tsui, F., Wellman, J., Uher, C. and Clarke, R. (1996) Morphology transition and layer-by-layer growth of Rh(1111), Phys. Rev. Lett. 76, pp. 3164–3167.

    Article  CAS  Google Scholar 

  8. Ernst, H.-J., Fabre, F., Folkerts, R. and Lapujoulade, J. (1994) Observation of a growth instability during low temperature molecular beam epitaxy, Phys. Rev. Lett. 72, pp. 112–115.

    Article  CAS  Google Scholar 

  9. Zuo, J.-K. and Wendelken, J.F. (1997) Evolution of mound morphology in reversible homoepitaxy on Cu(100), Phys. Rev. Lett 78, pp. 2791–2794.

    Article  CAS  Google Scholar 

  10. Kalff, M., Smilauer, P., Comsa, G. and Michely, T. (1999) No coarsening in Pt(111) homoepitaxy, Surf. Sci. 426, pp. L447–L453.

    Article  CAS  Google Scholar 

  11. Krug, J. (1997) On the shape of wedding cakes, J. Stat. Phys. 87 (1997) pp. 505–518.

    Article  Google Scholar 

  12. Politi, P. (1997) Different regimes in the Ehrlich-Schwoebel instability, J. Phys. I 17, pp. 797–806.

    Article  Google Scholar 

  13. Tang, L.-H., Smilauer, P. and Vvedensky, D.D. (1998) Noise-assisted mound coarsening in epitaxial growth, Eur. Phys. J. B 2, pp. 409–412.

    Article  CAS  Google Scholar 

  14. Siegert, M. (1998) Coarsening dynamics of crystalline thin films, Phys. Rev. Lett. 81, pp. 5481–5484.

    Article  CAS  Google Scholar 

  15. Moldovan, D. and Golubovic, L. (2000) Interfacial coarsening dynamics in epitaxial growth with slope selection, Phys. Rev. E 61, pp. 6190–6214.

    Article  CAS  Google Scholar 

  16. Michely, Th., Kalff, M., Comsa, G., Strobel, M. and Heinig, K.-H. (2001) Step edge diffusion and step atom detachment in surface evolution: Ion erosion of Pt(111), Phys. Rev. Lett. 86, pp. 2589–2592.

    Article  CAS  Google Scholar 

  17. Krug, J., Politi, P. and Michely, T. (2000) Island nucleation in the presence of step-edge barriers: Theory and applications, Phys. Rev. B 61, pp. 14037–14046.

    Article  CAS  Google Scholar 

  18. Heinrichs, S., Rottler, J. and Maass, P. (2000) Nucleation on top of islands in epitaxial growth, Phys. Rev. B 62, pp. 8338–8359.

    Article  CAS  Google Scholar 

  19. Krug, J. (2000) Scaling regimes for second layer nucleation, Eur. Phys. J. B 18, pp. 713–719.

    Article  CAS  Google Scholar 

  20. Castellano, C. and Politi, P. (2001) Spatiotemporal distribution of nucleation events during crystal growth, Phys. Rev. Lett. 87, 056102.

    Article  CAS  Google Scholar 

  21. Bromann, K., Brune, H., Röder, H. and Kern, K. (1995) Interlayer mass transport in homoepitaxial and heteroepitaxial metal growth, Phys. Rev. Lett. 75, pp. 677–680.

    Article  CAS  Google Scholar 

  22. Krug, J. (2000) Comment on “Determination of interlayer diffusion parameters for Ag(111)”, Phys. Rev. Lett. 87, art. no. 149601.

    Article  Google Scholar 

  23. Meyer, J.A., Vrijmoeth, J., van der Vlegt, H.A., Vlieg, E. and Behm, R.J. (1995) Importance of the additional step-edge barrier in determining film morphology during epitaxial growth, Phys. Rev. B 51, pp. 14790–14793.

    Article  CAS  Google Scholar 

  24. Krug, J. (1997) Origins of scale invariance in growth processes. Adv. Phys. 46, pp. 139–282.

    Article  CAS  Google Scholar 

  25. Gossmann, H.-J., Sinden, F.W. and Feldman, L.C. (1990) Evolution of terrace size distributions during thin-film growth by step-mediated epitaxy, J. Appl. Phys. 67, pp. 745–752.

    Article  CAS  Google Scholar 

  26. Cohen, P.I., Petrich, G.S., Pukite, P.R., WhaJey, G.J. and Arrott, A.S. (1989) Birth death models of epitaxy. 1. Diffraction oscillations from low index surfaces, Surf. Set. 216, pp. 222–248.

    Article  CAS  Google Scholar 

  27. Gerlaeh, R., Maroutian, T., Douillard, L., Martinotti, D. and Ernst, H.-J. (2001) A novel method to determine the Ehrlich-Sehwoebel barrier, Surf. Sd. 480, pp. 97–102.

    Article  Google Scholar 

  28. Michely T. Kalff M. Krug J. and Politi P. 1999 Hochzeitstorten und zipfelmutzen Strukturbildung anf platin Physikalische Blätter 55 11, pp. 53–58

    CAS  Google Scholar 

  29. Venables, J.A., Spiller, G.D.T. and Hanbücken, M. (1984) Nucleation and growth of thin films, Rep. Prog. Phys. 47, pp. 399–459.

    Article  Google Scholar 

  30. Krug, J., Plischke M. and Siegert, M. (1993) Surface diffusion currents and the universality classes of growth, Phys. Rev. Lett. 70, pp. 3271–3274.

    Article  CAS  Google Scholar 

  31. Politi, P., Grenet, G., Marty, A., Ponchet, A. and Villain, J. (2000) Instabilities in crystal growth by atomic or molecular beams, Phys. Rep. 324, pp. 271–404.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krug, J., Kuhn, P. (2002). Second Layer Nucleation and the Shape of Wedding Cakes. In: Kotrla, M., Papanicolaou, N.I., Vvedensky, D.D., Wille, L.T. (eds) Atomistic Aspects of Epitaxial Growth. NATO Science Series, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0391-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0391-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0675-3

  • Online ISBN: 978-94-010-0391-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics