Experimental Study of Surface Diffusion in Metal Overlayers on Anisotropic Metal Surfaces

  • A. T. Loburets
  • N. B. Senenko
  • Yu. S. Vedula
  • A. G. Naumovets
Chapter
Part of the NATO Science Series book series (NAII, volume 65)

Abstract

We compare and discuss the diffusion kinetics of Li, Sr, Dy and Cu overlayers on the (112) Mo and W surfaces. The experimental data are used to assess the role of such factors in surface diffusion as the substrate and diffuser chemical nature, substrate atomic structure, lateral interactions, phase transitions and effect of coadsorbates.

Keywords

Anisotropy Lithium Catalysis Tungsten Soliton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tringides, M.C. (ed.), Surface Diffusion: Atomistic and Collective Processes, Plenum, New York.Google Scholar
  2. 2.
    Bonzel, H.P. (1977) in Vanselow, R. and Tong, S.Y. (eds), Chemistry and Physics of Solid Surfaces CRC Press, Cleveland, Ohio. p. 87.Google Scholar
  3. 3.
    Bonzel, H.P. (1990) in Mehren, H. (ed.), Diffusion in Solid Metals and Alloys, Landolt-Bornstein, Group III: Condensed Matter, Vol. 26. Springer-Verlag, Berlin, p. 717.CrossRefGoogle Scholar
  4. 4.
    Kellogg, G.L. (1996) Atomic view of cluster diffusion on metal surfaces, Progr. Surf. Sci. 53, pp. 217–223.CrossRefGoogle Scholar
  5. 5.
    Loburets, A.T., Naumovets, A.G. and Vedula, Yu.S. (1997) Surface diffusion and phase transitions in atomic overlayers, in Tringides, M,C. (ed.), Surface Diffusion: Atomistic and Collective Processes. Plenum, New York. pp. 509–528.Google Scholar
  6. 6.
    Seebauer, E.G. and Allen, C.E. (1995) Estimating surface diffusion coefficients, Progr. Surf. Sci. 49, pp. 265–330.CrossRefGoogle Scholar
  7. 7.
    Bayat,_B. and Wassmuth, H.W. (1983) Directional dependence of the surface diffusion of Potassium on Tungsten(112), Surf. Sci. 133, pp. 1–8.CrossRefGoogle Scholar
  8. 8.
    Loburets, A.T., Senenko, N.B., Naumovets, A.G. and Vedula, Yu.S. (1995) Surface diffusion of strontium on the molybdenum(112) plane, Phys. Low-Dim. Struct. 10/11, p. 49.Google Scholar
  9. 9.
    Naumovets, A.G., Paliy, M.V., Vedula, Yu.S., Loburets, A.T. and Senenko, N.B. (1995) Diffusion of Lithium and Strontium on Mo(112), Progr. Surf. Sci. 48, pp. 59–70.CrossRefGoogle Scholar
  10. 10.
    Naumovets, A.G. and Vedula, Yu.S. (1985) Surface diffusion of adsorbates, Surf. Sci. Rep. 4, p. 365.CrossRefGoogle Scholar
  11. 11.
    Loburets, A.T. (1999) An experimental technique for recording adsorbate surface concentration profiles based on local measurements of the contact potential, Metallofiz. Nov. Tekh. 21, pp. 43–46.Google Scholar
  12. 12.
    Philibert, J. (1991) Atom Movements. Diffusion and Mass Transport in Solids. Les Editions de Physique, Les Ulis. p. 11.Google Scholar
  13. 13.
    Loburets, A.T., Naumovets, A.G. and Vedula, Yu.S. (1998) Diffusion of dysprosium on the (112) surface of molybdenum, Surf. Sci. 399, pp. 297–304.CrossRefGoogle Scholar
  14. 14.
    Loburets, A.T. (1999) Surface diffusion and phase transitions in copper overlayers on the (112) surfaces of molybdenum and tungsten, Metallofiz. Nov. Tekh. 21, pp. 47–51.Google Scholar
  15. 15.
    Vedula, Yu.S., Loburets, A.T., Lyuksyutov, I.F., Naumovets, A.G. and Poplavsky, V.V. (1990) Surface diffusion and interaction of adsorbed particles of electropositive elements on refractory metals, Kinet. Catal. 31, pp. 270–288.Google Scholar
  16. 16.
    Loburets, A.T., Senenko, N.B., Vedula, Yu.S. and Naumovets, A.G. (to be published) in Tringides, M.C. and Chvoj, Z. (eds.), Collective Diffusion on Surfaces: Collective Behavior and the Role of Adatom Interactions. Kluwer, Dordrecht.Google Scholar
  17. 17.
    Medvedev, V.K., Naumovets, A.G. and Smereka, T.P. (1973) Lithium adsorption on the (112) face of tungsten, Surf. Sci. 34, pp. 368–384.CrossRefGoogle Scholar
  18. 18.
    Medvedev, V.K. and Yakivchuk, A.I. (1975) Ukraimkii Fiz. Zhurnal 20, p. 1900.Google Scholar
  19. 19.
    Gupalo, M.S., Medvedev, V.K., Palyukh, B.M. and Smereka, T.P. (1979) Adsorption of lithium on the (112) face of a molybdenum crystal, Fiz. Tverd. Teta 21, 973; English translation: (1979) Sov. Phys. Solid State 21, 568 (1979).Google Scholar
  20. 20.
    Braun, O.M. and Medvedev, V.K. (1989), Usp. Fiz. Nauk 157, pp. 631–666; English translation: Interaction between particles adsorbed on metal surfaces, Sov. Phys. Uspekhi 32 328-348 (1989).CrossRefGoogle Scholar
  21. 21.
    Gonchar, F.M., Medvedev, V.K., Smereka, T.P. and Babkin, G.V. (1990) Dysprosium adsorption on Mo(112), Fiz. Tverd. Tela 32, pp. 1872–1875; English translation: Sov. Phys. Solid State 32 (1990) 1092.Google Scholar
  22. 22.
    Fedoras, A., Kolthoff, D., Koval, V., I. Lyuksyutov, I., Naumovets, A.G. and Pfnuer, H. (2000) Phase transitions in the adsorption system Li/Mo(112), Phys. Rev. B 82, pp. 2852–2861.CrossRefGoogle Scholar
  23. 23.
    Fedoras, A., Koval, V., Naumovets, A.G. and Pfnuer, H. (2001) Fizika Nizkikh Temperatur (Low Temperature Physics) 27 (to be published).Google Scholar
  24. 24.
    Kellogg, G.L. (1994) Field-ion microscope studies of single-atom surface diffusion and cluster nucleation on metal surfaces, Surf. Sci. Rep. 21, pp. 1–88.CrossRefGoogle Scholar
  25. 25.
    de Gennes, P.-G. (1979) Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca, New York. Ch. 8.Google Scholar
  26. 26.
    Bowker, M. and King, D.A. (1978) Adsorbate diffusion on single crystal surfaces I. The influence of lateral interactions, Surf. Sci. 71, pp. 583–598; Bowker, M. and King, D.A. (1978) Adsorbate diffusion on single crystal surfaces II. Extension to next nearest neighbor interactions, Surf. Sci. 72, pp. 208-212.CrossRefGoogle Scholar
  27. 27.
    Ala-Nissila, T. and Ying, S.C. (1992) Theory of classical surface diffusion, Progr. Surf. Sci 39, pp. 227–323.CrossRefGoogle Scholar
  28. 28.
    Lyuksyutov, I., Naumovets, A.G. and Pokrovsky, V. (1992) Two-Dimensional Crystals, Academic Press, Boston.Google Scholar
  29. 29.
    Lyuksyutov, I.F., Naumovets, A.G. and Vedula, Yu.S. (1986) in Trullinger, S.E., Zakharov, V.E. and Pokrovsky, V.L. (eds), Solitons, Elsevier, Amsterdam, p. 605.Google Scholar
  30. 30.
    Lyuksyutov, I.F., Everts H.-U. and Pfnür, H. (2001) Diffusion in a strongly correlated anisotropic overlayer, Surf. Sci. 481, pp. 124–134.CrossRefGoogle Scholar
  31. 31.
    Gomer, R. (1990) Diffusion of adsorbates on metal surfaces, Rep. Progr. Phys. 53, pp. 917–1002.CrossRefGoogle Scholar
  32. 32.
    Loburets, A.T., Naumovets, A.G., and Vedula, Yu.S. (1982) Surface diffusion of Lithium on (001) face of Tungsten, Surf. Sci. 120, pp. 347–366.CrossRefGoogle Scholar
  33. 33.
    Stolzenberg, M. (1992) Zweidimensionelle Phasenübergänge in Cu nnd Te Adsorbatsystemen, Dissertation, Physikalisches Institut, TU Clausthal, Kapitel 7.Google Scholar
  34. 34.
    Ferrando, R., Spadacini, R., Tommei, G.E. and Caratti, G. (1994) Correlation functions in surface diffusion—The multiple-jump regime, Surf. Sci. 311, pp. 411–421.CrossRefGoogle Scholar
  35. 35.
    Wang, S.C, Kürpick, U. and Ehrlich, G. (1998) Surface diffusion of compact and other clusters: Irx on Ir(111), Phys. Rev. Lett. 81, pp. 4923–4926.CrossRefGoogle Scholar
  36. 36.
    Tsong, T.T. (2001) Mechanisms of surface diffusion, Progr. Surf. Sci. 67, pp. 235–248.CrossRefGoogle Scholar
  37. 37.
    Naumovets, A.G. and Zhang, Zh. Fidgety particles on surfaces: How do they jump, walk, group, and settle in virgin areas? Surf. Sci. 500 (to be published).Google Scholar
  38. 38.
    Zgrablich, G. (1997) in W. Rudzinski, W. A. Steele and G. Zgrablich (eds) Equilibria and Dynamics of Gas Adsorption on Heterogeneous Solid Surfaces. Elsevier, Amsterdam, p. 373.CrossRefGoogle Scholar
  39. 39.
    Loburets, A.T., Naumovets, A.G. and Vedula, Yu.S. (1999) in R. Kutner, A. Pekalski and K. Sznajd-Weron (eds.), Anomalous Diffusion. From Basics to Applications. Springer, Berlin, p. 340.CrossRefGoogle Scholar
  40. 40.
    Loburets, A.T., Paliy, M.V., Senenko, N.B., Vedula, Yu.S. and Naumovets, A.G. (1999) Processes of self-organization in the zone of surface diffusion of metal adsorbates on metals, Functional Materials 6, pp. 194–202.Google Scholar
  41. 41.
    Goldenfeld, N. and Kadanoff, L.P. (1999) Simple lessons from complexity, Science 284, pp. 87–89.CrossRefGoogle Scholar
  42. 42.
    Bouchaud, J.P. and Georges, A. (1990) Anomalous diffusion in disordered media-statistical mechanisms, models and physical applications, Phys. Rep. 195, pp. 127–293.CrossRefGoogle Scholar
  43. 43.
    Kutner, R., Pekalski, A. and Sznajd-Weron K. (eds.) (1999) Anomalous Diffusion. Prom Basics to Applications. Springer, Berlin.Google Scholar
  44. 44.
    Metzler, R. and Klafter, J. (2000) The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339, pp. 1–77.CrossRefGoogle Scholar
  45. 45.
    Katrich, G.A., Klimov, V.V. and Yakovkin, I.N. (1994) Interrelation between atomic and electronic structures of alkaline-earth adlayers on Mo(112) and Re(l010), J. Etectr. Spectr. Rel. Phenom. 68, pp. 369–375.CrossRefGoogle Scholar
  46. 46.
    Dowben, P.A. (2000) The metallicity of thin films and overlayers, Surf. Sci. Rep. 40, pp. 151–245.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • A. T. Loburets
    • 1
  • N. B. Senenko
    • 1
  • Yu. S. Vedula
    • 2
  • A. G. Naumovets
    • 2
  1. 1.Yu. V. Kondratyuk State Technical UniversityUkraine
  2. 2.Institute of PhysicsNational Academy of Sciences of UkraineKiev 28Ukraine

Personalised recommendations