Skip to main content

Oxygen Intercalation in Strontium Ferrite: Evolution of Thermodynamics and Electron Transport Properties

  • Chapter
New Trends in Intercalation Compounds for Energy Storage

Part of the book series: NATO Science Series ((NAII,volume 61))

Abstract

The thermodynamics of oxygen intercalation in strontium ferrite SrFe2.5+δ is studied by means of the coulometric titration technique. The analysis of the oxygen concentration dependent behavior of partial thermodynamic functions reveals inhomogeneous architecture of the ferrite, which can be viewed as consisting of microscopic brownmillerite-like domains intergrown with perovskite-like structural fragments. The oxygen vacancies are mainly located in the brownmillerite-like domains. The oxygen intercalation results in a gradual increase of the perovskite-like fragments and delocalization of the hole carriers. The changes in conductivity and thermopower with oxygen content can satisfactorily be explained in frameworks of a small-polaron conduction model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bosman A.J. and van Daal, H.J. (1970), “Small-polaron versus Band Conduction in some Transition-metal Oxides”, Advances in Phys. 19, 1.

    Article  Google Scholar 

  • Bouwmeester, H.J.M. and Burggraaf, A.J. (1996), “Dense Ceramic Membranes for Oxygen Separation”, in Membrane Science and Technology Series 4: Fundamentals of Inorganic Membrane Science and Technology, A.J. Burggraaf and L. Cot (eds.), Elsevier Science, Amsterdam, pp.435–527,.

    Chapter  Google Scholar 

  • Cusak, N. and Kendall, P. (1958), “Absolute Scale of Thermoelectric Power at High Temperature”, Proc. Phys. Soc. 72, 898.

    Article  Google Scholar 

  • Doumerc, J.-P. (1994), “Thermoelectric Power for Carriers in Localized States: A Generalization of Heikes and Chaikin-Beni Formulae”, J. Solid State Chem. 110, 419.

    Article  Google Scholar 

  • Goodenough, J.B. and Zhou, J.-S. (1998), “Localized to Itinerant Electronic Transitions in Transition-Metal Oxides with Perovskite Structure”, Chem. Mater. 10, 2980.

    Article  Google Scholar 

  • Hodges, J.P., Short, S., Jorgensen, J.D., Xiong, X., Dabrovski, B., Mini, S.M. and Kimball, C.W. (2000), “Evolution of Oxygen-Vacancy Ordered Crystal Structures in the Perovskite Series SrnFenO3n-1 (n=2, 4, 8, and ∞), and the Relationship to Electronic and Magnetic Properties”, J. Solid State Chem. 151, 190.

    Article  Google Scholar 

  • Kozhevnikov, V.L., Leonidov, I.A., Patrakeev, M.V., Mitberg, E.B. and Poeppelmeier, K.R. (2001), “Electrical Properties of the Ferrite SrFeOy at High Temperatures”, J. Solid State Chem. 158, 320.

    Article  Google Scholar 

  • Patrakeev, M.V., Mitberg, E.B., Lakhtin, A.A., Leonidov, I.A., Kozhevnikov, V.L. and Poeppelmeier, K.R. (1998), “Thermodynamics of the Movable Oxygen and Conducting Properties of the Solid Solution YBa2Cu3-xCoxO6+δ at High Temperatures”, Ionics, 4, 191.

    Article  Google Scholar 

  • Schmidt, M. and Campbell, S.J. (2001), “Crystal and Magnetic Structures of Sr2Fe2O5 at Elevated Temperature”, J. Solid State Chem. 156, 292.

    Article  Google Scholar 

  • Takeda, T., Kanno, R., Kawamoto, Y., Takano, M., Kawasaki, S., Kamiyama, T. and Izumi, F. (2000), “Metal-Semiconductor Transition, Charge Disproportionation, and Low-temperature Structure of Ca1-xSrxFeO3 Synthesized Under High-oxygen Pressure”, Solid State Sci. 2, 673.

    Article  Google Scholar 

  • Tuller, H.L. (1986), “Highly Conductive Ceramics”, in Ceramic Materials for Electronics, (R.C. Buchanan, ed.), pp.425–473, Marcel Dekker, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Patrakeev, M.V., Shilova, J.A., Mitberg, E.B., Lakhtin, A.A., Leonidov, I.A., Kozhevnikov, V.L. (2002). Oxygen Intercalation in Strontium Ferrite: Evolution of Thermodynamics and Electron Transport Properties. In: Julien, C., Pereira-Ramos, J.P., Momchilov, A. (eds) New Trends in Intercalation Compounds for Energy Storage. NATO Science Series, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0389-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0389-6_50

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0595-4

  • Online ISBN: 978-94-010-0389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics