Electronic Structure of Various Forms of Solid State Carbons. Graphite Intercalation Compounds

  • J. Conard
Part of the NATO Science Series book series (NAII, volume 61)


The study of carbons in the solid state implies an examination of the bond between neighbouring carbons and of its variability. The relationship between actual bonds and the hybridisation of atomic orbitals (AO) which represents them is then examined, as well as the formation of electronic conduction bands. The advantages and limits of the different models -more or less simplified -which have been used to investigate the band structure and/or the electronic states of graphite, of point defect in graphite, of its intercalation compounds, and of disordered carbons, are described. Some magnetic methods of investigation, namely static magnetic susceptibility, -sensitive to the donor or acceptor nature of any foreign atoms present -, nuclear magnetic resonance (NMR)- using the nucleus of certain atoms as probes for the study of the conduction bands near the Fermi level-, and electron paramagnetic resonance (EPR) -sensitive to the delocalisation of electrons and also to the presence of certain types of defects -are then presented.


Nuclear Magnetic Resonance Electron Paramagnetic Resonance Fermi Level Alkali Metal Graphene Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aladekomo, I. B. and Bragg, R.H. (1990) Carbon 28, 897.CrossRefGoogle Scholar
  2. Bayot, V., Piraux, L., Michellaud, J.P., Issi, J.P., Lelaurain, M., and Rannou, I. (1992) Mat. Sc. Forum 91-93, 487CrossRefGoogle Scholar
  3. Biensan, P., Roux, I.C., Saadaoui, H., and Flandrois, S. (1990) Microsc. Microanal. Microstruct. 1, 103.CrossRefGoogle Scholar
  4. Bouraoui, A. (1965) Bull. Soc. Fr. Miner. Crist. LXXXVIII, 663.Google Scholar
  5. Charlier, J.C., Michellaud, J.P., and Gonze, X. (1992) Phys. Rev. B 46, 4531CrossRefGoogle Scholar
  6. Conard, J. (1984) in L. Petrakis and J. Fraissard (eds.) Magnetic Resonance, Applications to Fossil Energy, D. Reidel, Dordrecht, p. 441.CrossRefGoogle Scholar
  7. Conard, J. (1986) Proc. Colloque Franco-Japonais sur les Composes d'Intercalation du Graphite, Ann. de Phys. Coll. 2, (Suppl. 2), 11, 235.Google Scholar
  8. Conard, J. and Estrade, H. (1975) Proc. 12th Biennial Carbon Conf., Pittsburgh, PA, p. 19.Google Scholar
  9. Conard, J. and Estrade, H. (1977) Mater. Sci. Eng. 31, 173.CrossRefGoogle Scholar
  10. Conard, J. and Fuzellier, H. (1992) in D. Tchoubar and J. Conard (eds.) Proc. 6th Intl. Conf. on Intercalation Compounds (Orleans, France) Mat. Sci. Forum 91-93, 521.Google Scholar
  11. Conard, J., Estrade, H., Lauginie, P., Fuzellier, H., Furdin, G., and Vasse, R. (1980a) Physica B 99, 521.CrossRefGoogle Scholar
  12. Conard, J., Guttierez-Lebrun, M., Lauginie, P., Estrade-Szwarckopf, H., and Hermann, G. (1980b) Synth. Met. 2, 227.CrossRefGoogle Scholar
  13. Conard, J., Estrade-Szwarckopf, H., and Lauginie, P. (1981a) in Physics of Intercalation Compounds, Springer Series, Solid State Science 38, 264.Google Scholar
  14. Conard, J., Lauginie, P., Estrade-Szwarckopf, H., Hermann, G., Guerard, D., and Lagrange, P.A. (1981b) Physica B 105, 285.CrossRefGoogle Scholar
  15. Conard, J., Fuzellier, H., and Vangelisti, R. (1988) Synth. Met. 23, 277.CrossRefGoogle Scholar
  16. Conard, J., Nalimova, V.A., and Guerard, D. (1994) Proc. 7th Intl. Conf. on Intercalation Compounds, Louvain (Belgium), Mol. Cryst. Liq. Cryst. 244-245, 427.Google Scholar
  17. Conard, J. and Lauginie, P. (1990) A new Covalent Bond of Carbon, Interstitial Carbon Atoms in Graphite: a 13C NMR Study, Carbon-90 Intl C-conference, Paris.Google Scholar
  18. Delhaes, P. (1977) Mater. Sci. Eng. 31, 225.CrossRefGoogle Scholar
  19. Estrade-Szwarckopf, H., Conard, J., and Mering, J. (1975) Carbon 13, 11.CrossRefGoogle Scholar
  20. Guerard, D. and Nalimova, V.A. (1994) Mol. Cryst. Liq. Cryst. 244, 263.CrossRefGoogle Scholar
  21. Haering, R.R and Wallace, P.R. (1957) J. Phys. Chem. Sol. 3, 253.CrossRefGoogle Scholar
  22. Herpin, A. (1965) “Structure de bandes du graphite” in Les Carbones (Edited by Groupe Français d'Etude des Carbones), Masson, Paris, Vol. 1, p. 201.Google Scholar
  23. Hiroyama, Y. and Kume, K., (1988) Solid State Commun. 65, 617.CrossRefGoogle Scholar
  24. Holzwarth, N.A.W. (1992) “Graphite Intercalation Compounds II”, in Springer Series in Mat. Science, Springer-Verlag, Berlin, 18, 7.Google Scholar
  25. Holzwarth, N.A.W. and Rabii, S. (1977) Mater. Sci. Eng. 31, 193.Google Scholar
  26. Holzwarth, N.A.W., Rabii, S., and Girifalco, L.A. (1978) Phys. Rev. B 18, 5190.CrossRefGoogle Scholar
  27. Jebli, R., Volpilhac G., Hoarau, I., and Achard, F. (1984) J. Chim. Phys. 81, 873.Google Scholar
  28. Julg, G.A. and Rajzmann, M. (1979) Carbon 17, 335.CrossRefGoogle Scholar
  29. Kamitakahara, W.A., Zaresky, I.L., and Eklund, P.C. (1985) Synth. Met. 12, 301.CrossRefGoogle Scholar
  30. Kittel, C. (1967) Introduction to Solid State Physics (3rd Edition), John Wiley & Sons, New York, p. 59.Google Scholar
  31. Koma, A., Miki, K., Suematsu, H., Ohno, T., and Kamimura, H. (1986) Phys. Rev. B 34, 2434.CrossRefGoogle Scholar
  32. Kume, K. (1986) Coll. Franc.-Jap. sur les Composes d'Insertion, Paris 1985, Ann. de Phys. 11, 245.Google Scholar
  33. Kume, K., Nomura, K., and Hiroyama, V. (1985) Synth. Met. 12, 307.CrossRefGoogle Scholar
  34. Lauginie, P. (1988) Ph.-D. dissertation, Université d'Orsay, France.Google Scholar
  35. Lauginie, P. and Conard, J. (1994) Mol. Cryst. and Liq. Cryst. 245, 19.CrossRefGoogle Scholar
  36. Lauginie, P., Letellier, M., Estrade, H., Conard, J., and Guerard, D. (1978) Proc.5th London Int. Carbon and Graphite Conf., Soc. of Chem. Ind. Ed., London 11, 645.Google Scholar
  37. Lauginie, P., Messaoudi, A., and Conard, J. (1993) Synth. Met. 55-57, 3000.Google Scholar
  38. Maire, J. and Mering, J. (1960) J. Chim. Phys. 57, 803.Google Scholar
  39. Marchand, A. (1965) “Les modeles electroniques des carbones” in Les Carbones, (Edited by Groupe Français d'Etude des Carbones), Masson, Paris, Vol. I, p. 232Google Scholar
  40. Marchand, A. and Boy, F. (1967) Carbon, 5, 227.CrossRefGoogle Scholar
  41. Marchand, A. and Conard, J. (1984) in B. Durand (ed.) “Kerogen”, Editions Technip, p. 243.Google Scholar
  42. McClure, J.W (1960) Phys. Rev. 119, 606.CrossRefGoogle Scholar
  43. Mizutani, U., Kondow, I., and Massalski, T.B. (1978) Phys. Rev. B 17, 3165.CrossRefGoogle Scholar
  44. Ollivier, P. (1985) Ph.-D. dissertation, Université d'Orléans, France.Google Scholar
  45. Poquet, E. (1963) Ph.-D dissertation, Université de Bordeaux, France.Google Scholar
  46. Poquet, E., Lumbroso, N., Hoarau, J., Marchand, A., Pacault, A., and Soule, D.E. (1960) J. Chim. Phys. 866.Google Scholar
  47. Posternak, M., Baldereschi, A., Freeman, A. J., Wimmer, and Weinert, M. (1983) Phys. Rev. Lett. 50, 761; (1983) Mater. Res. Soc. Proc. 20, 117.CrossRefGoogle Scholar
  48. Priester, C., Allan, G., and Conard, J. (1982) Phys. Rev. B 26, 4680.CrossRefGoogle Scholar
  49. Rouchy, J.P. and Mering, J. (1973) C.R. Acad. Sci. (Paris) 277C, 533.Google Scholar
  50. Rüdorff, W. and Schultze, E. (1954) Z. Anorg. Allgem. Chem. 277, 156.CrossRefGoogle Scholar
  51. Saadoui, H., Roux, J.C., Flandrois, S., and Nysten, B. (1993) Carbon 31, 481.CrossRefGoogle Scholar
  52. Saint-Jean, M., Fretigny, C., and Quinton, M.F. (1994) Mol. Cryst. Liq. Cryst. 245, 123.CrossRefGoogle Scholar
  53. Saito, R. and Kamimura, H. (1986) Phys. Rev. B 33, 7218.CrossRefGoogle Scholar
  54. Setton, R. (1992) in D. Tchoubar and J. Conard (eds.) Proc. 6th Intl. Conf. on Intercalation Compounds (Orleans, France) Mater. Sci. Forum 91-93, 763.Google Scholar
  55. Slater, J.C. (1940) in F. Seitz, The Modern Theory of, McGraw Hill, p. 421.Google Scholar
  56. Slonczewski, J.C. and Weiss, P.R. (1958) Phys. Rev. 109, 272.CrossRefGoogle Scholar
  57. Soule, D.E. (1962) Proc. 5th Conf. on Carbon, Pergamon, New York, I, 13.Google Scholar
  58. Tomanek, D. and Louie, S.G. (1988) Phys. Rev. 37, 8327.Google Scholar
  59. Tatar R.C. and Rabii S., (1982) Phys. Rev. B 25, 4126.CrossRefGoogle Scholar
  60. Wallace, P.R. (1947) Phys. Rev. 71, 622; (1948) Phys. Rev. 72, 258.MATHCrossRefGoogle Scholar
  61. Vannoni, C.S., Bernier, P., Bethune, D., Meijer, G., and Salem, J. (1991) J. Am. Chem. Soc. 113, 3190.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • J. Conard
    • 1
  1. 1.Centre de Recherche sur la matière DiviséeUMR-CNRSOrléans cedex 2France

Personalised recommendations