Skip to main content

Conductive Polymers and Hybrid Materials as Insertion Electrodes for Energy Storage Applications

  • Chapter
New Trends in Intercalation Compounds for Energy Storage

Part of the book series: NATO Science Series ((NAII,volume 61))

Abstract

In addition to the electronic conductivity which constituted their initial thrust, conductive polymers display interesting electrochemical properties which constitute the base for their application in different types of electro-ionic devices. In hybrid organic-inorganic materials based on conductive polymers, the electroactivity of molecular doping species or other inorganic components is added to that of the polymers themselves, leading to a whole new spectrum of hybrid materials that allow for the harnessing and control of the electrochemical properties of molecular species and put them to work in the development of all sorts of functional materials and devices, from sensors or catalysts to rechargeable lithium batteries, supercapacitors or photoelectrochemical devices. In this chapter we present several examples of this type of functional materials, their synthesis, properties and applications. We will make special emphasis on the design of electrodes based on conducting polymers and hybrid organic-inorganic materials based on them, and will analyze their peculiar ion-inserting mechanisms and their possible application in energy storage devices

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armand, M., Sanchez, J. Y., Gauthier, M., Choquette, Y., (1994) “Polymeric Materials for Lithium Batteries”. In Electrochemistry of Novel Materials (J. Lipkowski, P. N. Ross Eds.), Chapter 2, pp. 65–110,VCH.

    Google Scholar 

  • Furukawa, N. and Nishio, K. (1993), “Lithium Batteries with Polymer Electrodes” In: Applications of Electroactive Polymers, (B. Scrosati, Ed.) pp 150–181, Chapman & Hall, United Kingdom.

    Chapter  Google Scholar 

  • Gómez-Romero, P. and Casañ-Pastor, N. (1996), “Photoredox Chemistry in Oxide Clusters. Photochromic and Redox Properties of Polyoxometalates in Connection with Analog Solid State Colloidal Systems.”, J. Phys. Chem. 100, 12448–12454.

    Article  Google Scholar 

  • Gómez-Romero, P. (1997),”Polyoxometalates as Photoelectrochemical Models for Quantum-Sized Semiconducting Oxides.”, Solid State Ionics, 101-3, 243–248.

    Article  Google Scholar 

  • Gómez-Romero, P. and Lira-Cantú, M. (1997).”Hybrid Organic-Inorganic Electrodes: The Molecular Material Formed Between Polypyrrole and the Phosphomolybdate Anion.” Adv. Mater. 9(2), 144–147.

    Article  Google Scholar 

  • Gómez-Romero, P.; Torres-Gómez, G. (2000) “Molecular Batteries. Harnessing Fe(CN)6 3- Electroactivity in Hybrid Polyaniline-Hexacyanoferrate Electrodes.”, Adv.Mater., 12(19), 1454–1456.

    Article  Google Scholar 

  • Gomez-Romero, P. (2001), “Hybrid Organic-Inorganic Materials. In Search of Synergic Activity”, Adv.Mater. 13(3), 163–174.

    Article  Google Scholar 

  • Hännger, D., Novák, P., Haas, O., Piro, B. and Pham, M.-C. (1999), “Poly(5-amino-1,4-naphthoquinone), a Novel Lithium-Inserting Electroactive Polymer with High Specific Charge”, J. Electrochem. Soc., 146(7), 2393–2396.

    Article  Google Scholar 

  • Judeinstein, P. and Sanchez, C. (1996).“Hybrid organic-inorganic materials: a land of multidisciplinarity” J. Mater. Chem. 6(4), 511–525.

    Article  Google Scholar 

  • Kanatzidis, M. G., Wu, C. G., Marcy, H. O. and Kannewurf, C. R., (1989), “Conductive-polymer bronzes. Intercalated polyaniline in vanadium oxide xerogels”, J. Am. Chem. Soc., 111(11), 4139–4141.

    Article  Google Scholar 

  • Kuwabata, S., Idzu, T., Martin, C. R. and Yoneyama, H., (1998), “Charge-discharge properties of composite films of polyaniline and crystalline V2O5 particles”, J. Electrochem. Soc., 145(8), 2707–2710.

    Article  Google Scholar 

  • Leroux, F., Koene, B. E. and Nazar, L. F., (1996), “Electrochemical lithium intercalation into a Polyaniline/V2O5 Nanocomposite”, J. Electrochem. Soc., 143(9), L181–183.

    Article  Google Scholar 

  • Leroux, F., Goward, G., Power, W. P. and Nazar, L. F. (1997), “Electrochemical Li Insertion into Conductive Polymer/V2O5 Nanocomposites

    Google Scholar 

  • Lira-Cantú, M. and Gomez-Romero, P., (1997), “Hybrid organic-inorganic functional materials: insertion electrodes formed by conducting organic polymers and electroactive inorganic species”, In Recent Res. Dev. Phys. Chem., Vol.1 (S.G. Pandalai Ed.),pp.379–401.

    Google Scholar 

  • Lira-Cantú, M. and Gómez-Romero, P. (1998).”Electrochemical and Chemical Syntheses of the Hybrid Organic-Inorganic Electroactive Material formed by Phosphomolybdate and Polyaniline. Application as Cation-Insertion Electrodes.” Chem. Mater., 10, 698–704.

    Article  Google Scholar 

  • Lira-Cantú, M.; Gómez-Romero P. (1999), “Synthesis and Characterization of Intercalate Phases in the Organic-Inorganic Polyaniline/V2O5 System.” J.Solid State Chem., 147(2), 601–608.

    Article  Google Scholar 

  • Lira-Cantú, M.;. Gómez-Romero, P. (1999), “The Organic-Inorganic Polyaniline/V2O5 System. Application as a High-Capacity Hybrid Cathode for Rechargeable Lithium Batteries.”, J.Electrochem.Soc., 146(6), 2029–2033.

    Article  Google Scholar 

  • Livage, J., (1991), “Vanadium Pentoxide Gels”, Chem. Mater., 3(4), 578–593

    Article  Google Scholar 

  • Miller, J.S. (1993), “Conducting Polymers. Materials of Commerce, I”, Adv. Mater. 5, 587.

    Article  Google Scholar 

  • Miller, J.S. (1993), “Conducting Polymers. Materials of Commerce, II”, Adv. Mater. 5, 671.

    Article  Google Scholar 

  • Monta, M., Miyazaki, S., Ishikawa, M. and Matsuda, Y. (1995), “Layered Polyaniline Composites with Cation-Exchanging Properties for Positive Electrodes of Rechargeable Lithium Batteries”, J. Electrochem. Soc., 142(1), L3–L5.

    Article  Google Scholar 

  • Naoi, K.; Kawase, K.; Mori, M.; Komiyama, M., “Electrochemistry of poly(2,2′-dithiodianiline): a new class of high energy conducting polymer interconnected with S-S bonds.”, J. Electrochem. Soc., 144(6), L173–L175

    Google Scholar 

  • Naoi, K., Suematsu, S. and Manago, A. (2000), “Electrochemistry of Poly(1,5-diaminoanthraquinone) and Its Application in Electrochemical Capacitor Materials”, “,J. Electrochem. Soc., 147(2), 420–426.

    Article  Google Scholar 

  • Novak B. M. (1993) “Hybrid nanocomposite Materials-Between Inorganic Glasses and Organic Polymers”. Adv. Mater., 5(6), 422–433.

    Article  Google Scholar 

  • Novak, P.; Müller, K.; Santhanam, K.S.V. and Haas, O. (1997), “Electrochemically Active Polymers for Rechargeable Batteries”, Chem. Rev. 97, 207.

    Article  Google Scholar 

  • Oyama, N.; Tatsuma, T.; Sato, T.; Sotomura, T., (1995), “Dimercaptan-polyaniline composite electrodes for lithium batteries with high energy density.” Nature, 373(6515), 598–600.

    Article  Google Scholar 

  • Pope, M.T. (1983). “Heteropoly and Isopoly Oxometalates”. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Pope, M.T. and Müller, A. (Eds). (1994). “Polyoxometalates: From Platonic Solids to Antiretroviral Activity”, Vol. 10, Kluwer Academic Publishers, Dordretch (The Netherlands).

    Google Scholar 

  • Ruiz-Hitzky, E., (1993), “Conducting Polymers Intercalated in Layered Solids”, Adv. Mater., 5(5), 334–340.

    Article  Google Scholar 

  • Ruiz-Hitzky, E. and Aranda, P., (1997), “Confinement of conducting polymers into inorganic solids”, An. Quim. Int. Ed., 93(3), 197–212.

    Google Scholar 

  • Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K. and Heeger, A.J. (1977), “Synthesis of Electrically Conducting Organic Polymers.: Halogen derivatives of Polyacetylene, (CH)x.”, J. Chem. Soc., Chem. Commun., 578–580.

    Google Scholar 

  • Torres-Gómez, G.;. Gómez-Romero, P. (1998), “Conducting Organic Polymers with Electroactive Dopants. Synthesis and Electrochemical Properties of Hexacyanoferrate-Doped Polypyrrole”. Synthetic Metals, 98, 95–102.

    Article  Google Scholar 

  • Torres-Gómez, G.; Skaarup, S.; West, K.; Gómez-Romero, P. (2000),”Energy Storage in Hybrid Organic-Inorganic Materials. Hexacyanoferrate-Doped Polypyrrole as Cathode in Rechargeable Lithium Cells” J.Electrochem.Soc., 147(7), 2513–2516.

    Article  Google Scholar 

  • Torres-Gómez, G.;. Tejada-Rosales, E. and Gómez-Romero, P. (2001), “Integration of Hexacyanoferrate as an Active Species in a Molecular Hybrid Material. Transport Properties and Application of Polyaniline/Hexacyanoferrate as a Cathode in Rechargeable Lithium Batteries”. Chem. Mater, 13,3693–3697.

    Article  Google Scholar 

  • Wu, C. G., DeGroot, D. C., Marcy, H. O., Schindler, J. L., Kannewurf, C. R., Liu, Y. J., Hirpo, W. and Kanatzidis, M. G., (1996), “Redox Intercalative Polymerization of Aniline in V2O5 Xerogel. The Postintercalative Intralamellar Polymer Growth in Polyaniline/Metal Oxide Nanocomposites Is Facilitated by Molecular Oxygen”, Chem. Mater., 8(8), 1992–2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gómez-Romero, P. (2002). Conductive Polymers and Hybrid Materials as Insertion Electrodes for Energy Storage Applications. In: Julien, C., Pereira-Ramos, J.P., Momchilov, A. (eds) New Trends in Intercalation Compounds for Energy Storage. NATO Science Series, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0389-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0389-6_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0595-4

  • Online ISBN: 978-94-010-0389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics