Skip to main content

Physical Chemistry and Electrochemistry Of Intercalation in Disordered Compounds

  • Chapter
  • 895 Accesses

Part of the book series: NATO Science Series ((NAII,volume 61))

Abstract

A brief overview of the intercalation compounds in their disordered state is given to identify limitation of materials used within the field of energy storage. In this paper, we discuss trends in materials design and document the role of the crystalline nature, e.g. amorphous vs. crystallised, of electrode material for lithium batteries. The electrochemical properties are examined in relation with the physical chemistry of materials. Finally, we show the importance of local probes for a well-defined characterisation of the structural features of materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rawson, H., Baynton, P.L., and Stanworth, J.F. (1957) J. Electrochem. Soc. 4, 104.

    Google Scholar 

  2. Whittingham, M.S., Chianelli, R.S., and Jacobson, A.J. (1980) in D.W. Murphy, J. Broadhead, and B.C.H. Steele (eds.), Materials for Advanced Batteries, Plenum, New York, p. 291.

    Chapter  Google Scholar 

  3. Py, M.A. and Haering, R.R. (1983) Can. J. Phys. 61, 76.

    Article  Google Scholar 

  4. Selwyn, L.S., McKinnon, W.R., von Sacken, U., and Jones, C.A. (1987) Solid State Ionics 22, 337.

    Article  Google Scholar 

  5. Haering, R.R., Stiles, J.A.R., and Brandt, K. (1980) U.S. Patent 4, 224, 390.

    Google Scholar 

  6. Jacobson, A.J., Chianelli, R.R., and Whittingham, M.S. (1979); J. Electrochem. Soc. 126, 2277.

    Article  Google Scholar 

  7. Julien, C., Saikh, S.I., and Nazri, G.A. (1990) ISSI Letters 1, 12.

    Google Scholar 

  8. Julien, C., Saikh, S.I., and Nazri, G.A. (1992) Mater. Sci. Eng. B 15, 73.

    Article  Google Scholar 

  9. Bichel, R. and Levy, F. (1986) J. Phys. D 19, 1809

    Article  Google Scholar 

  10. Julien, C. and Nazri, GA (1994) Solid State Batteries: Materials Design and Optimization, Kluwer, Boston.

    Book  Google Scholar 

  11. Julien, C and Yebka, B (2000) in C. Julien and Z. Stoynov (eds.) Materials for Lithium-ion Batteries, NATO-ASI Series, Ser. 3/85, Kluwer Acad. Publ., Dordrecht, p. 263.

    Chapter  Google Scholar 

  12. Julien, C. and Nazri, G.A. (1994) Solid State Ionics 68, 111.

    Article  Google Scholar 

  13. Kihlborg, L. (1963) Arkiv Kemi 21, 471.

    Google Scholar 

  14. Guzman, G., Yebka, B., Livage, J., and Julien, C. (1996) Solid State Ionics, 86-88, 407.

    Article  Google Scholar 

  15. Nazri, G.A. and Julien, C. (1995) Ionics 2, 1.

    Article  Google Scholar 

  16. Dampier, F.W. (1974) J. Electrochem. Soc. 121, 656.

    Article  Google Scholar 

  17. Margalit, N. (1974) J. Electrochem. Soc. 121, 1460.

    Article  Google Scholar 

  18. Kumagai, N., Kumagai, N., and Tanno, K. (1988) J. Appl. Electrochem. 18, 857.

    Article  Google Scholar 

  19. Sugawara, M., Kitada, Y., and Matsuki, K. (1989) J. Power Sources 26, 373.

    Article  Google Scholar 

  20. Julien, C., Nazri, G.A., Guesdon, J.-P., Gorenstein, A., Khelfa, A., and Hussain, O.M. (1994) Solid State Ionics 73, 319.

    Article  Google Scholar 

  21. Julien, C., Khelfa, A., Hussain, O.M., and Nazri, G.A. (1995) J. Cryst. Growth 156, 235.

    Article  Google Scholar 

  22. Julien, C., Yebka, B., and Guesdon, J.-P. (1995) Ionics 1, 316.

    Article  Google Scholar 

  23. Julien, C. (1996) Ionics 2, 169.

    Article  Google Scholar 

  24. Goodenough, J.B., Manthiram, A., James, A.C.W.P., and Strobel, P. (1989) Mater. Res. Soc. Symp. Proc. 135, 391.

    Article  Google Scholar 

  25. Escobar-Alarcon, L., Haro-Poniatowski, E., Massot, M., Julien, C. (1999) Mat. Res. Soc. Symp. Proc. 548, 223.

    Article  Google Scholar 

  26. Julien, C., Camacho-Lopez, M.A., Escobar-Alarcon, L., and Haro-Poniatowski, E. (2001) Mater. Chem. and Phys. 68, 210.

    Article  Google Scholar 

  27. Garcia, B., Farcy, J., Pereira-Ramos, J.P., Perichon, J., and Baffier, N. (1995) J. Power Sources 54, 373.

    Article  Google Scholar 

  28. Tarascon, J.M. and Guyomard, D. (1993) Electrochim. Acta 38, 1221 and references therein.

    Article  Google Scholar 

  29. Tarascon, J.M. (2000) in C. Julien and Z. Stoynov (eds.) Materials for Lithium-ion Batteries, NATO-ASI Series, Ser.3/85, Kluwer Acad. Publ, Dordrecht, p. 75.

    Chapter  Google Scholar 

  30. Chitra, S., Kalyani, P., Mohan, T., Gangadharan, R., Yebka, B., Castro-Garcia, S., Massot, M., Julien, C., and Eddrief, M. (1999) J. Electroceram. 3, 433.

    Article  Google Scholar 

  31. Kosova, N.V., Asanov, I.P., Devyatkina, E.T., Avvakumov, E.G. (1999); J. Solid State Chem. 146, 184.

    Article  Google Scholar 

  32. Soiron, S. (2001) Ph. D. Thesis, Université de Picardie Jules Verne, France.

    Google Scholar 

  33. Bernier, J.C., Poix, P., and Michael, A. (1961) C.R. Acad. Sci. (Paris) 253, 1578.

    Google Scholar 

  34. Fey, G.T.K., Li, W., and Dahn, J.R. (1994) J. Electrochem. Soc. 14, 2279.

    Article  Google Scholar 

  35. Prabaharan, S.R.S., Michael, M.S., Radhakrishna, S., and Julien, C. (1997) J. Mater. Chem. 7, 1791.

    Article  Google Scholar 

  36. Orsini, F., Baudrin, E., Denis, S., Dupont, L., Touboul, M., Guyomard, D., Piffard, Y., and Tarascon, J.M. (1998) Solid State Ionics 107, 123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Julien, C., Yebka, B. (2002). Physical Chemistry and Electrochemistry Of Intercalation in Disordered Compounds. In: Julien, C., Pereira-Ramos, J.P., Momchilov, A. (eds) New Trends in Intercalation Compounds for Energy Storage. NATO Science Series, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0389-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0389-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0595-4

  • Online ISBN: 978-94-010-0389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics