Advertisement

Lattice Dynamics of Manganese Oxides and Their Intercalated Compounds

  • C. Julien
  • M. Massot
Chapter
Part of the NATO Science Series book series (NAII, volume 61)

Abstract

Manganese oxides with tunnel and layered crystal structures constitute a large family of porous materials from ultramicropore to mesopore [1]. Most of the structural frameworks of the manganese dioxides (MD) consist of MnO6 octahedral units shared by corners and/or edges. The excellent electrochemical properties of several MD phases have attracting much attention for positive electrode materials in lithium batteries [2-5]. MnO2 was originally developed as electrode in Leclanché cells and, recently as positive electrode for a primary Li cell, but extensive research has been undertaken during the last decade to develop rechargeable Li//MnO2 cells [6].

Keywords

Raman Scattering Manganese Oxide Manganese Dioxide Lithium Content Raman Scattering Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feng, Q., Kanoh, H., and Ooi, K. J. (1999) Mater. Chem. 9, 319.CrossRefGoogle Scholar
  2. 2.
    Le Goff, P., Baffler, N., Bach S., and Pereira-Ramos, J.P. (1996) Mater. Res. Bull. 31, 63.CrossRefGoogle Scholar
  3. 3.
    Hunter, J.C. (1981) J. Solid State Chem. 39, 142.CrossRefGoogle Scholar
  4. 4.
    Thackeray, M.M., De Kock, A., De Piocciotto, L.A., and Pistoia, G. (1989) J. Power Sources 26, 355.CrossRefGoogle Scholar
  5. 5.
    Thackeray, M.M., Rossow, M.H., Gummow, R.J., Liles, D.C., Pearce, K., De Kock, A., David, I.F., and Hull, S. (1993) Electrochim. Acta 38, 1259.CrossRefGoogle Scholar
  6. 6.
    Nardi, J.C. (1985) J. Electrochem. Soc. 132, 1787.CrossRefGoogle Scholar
  7. 7.
    Palache, C., Berman, H., and Frondel, C. (1963) The System of Mineralogy, 7th ed., vol. 1, John Wiley and Sons, New York.Google Scholar
  8. 8.
    Ohzuku, T., Kitagawa, M., and Hirai, T. (1989) J. Electrochem. Soc. 137, 3169.CrossRefGoogle Scholar
  9. 9.
    LeGoff, P., Baffler, N., Bach, S., and Pereira-Ramos, J.P. (1994) J. Mater. Chem. 4, 4875.CrossRefGoogle Scholar
  10. 10.
    Potter. R.M., and Rossman G.R. (1979) Amer. Mineral. 64, 1199.Google Scholar
  11. 11.
    Richardson,T.J., and Ross Jr., P.N. (1996) Mater. Res. Bull. 31, 935.CrossRefGoogle Scholar
  12. 12.
    Richardson, T.J., Wen, S.J., Striebel, K.A., Ross Jr., P.N., and Cairns, E.J. (1997) Mater. Res. Bull. 32, 609.CrossRefGoogle Scholar
  13. 13.
    Wen, S.J., Richardson, T.J., Ma, L., Striebel, K.A., Ross Jr., P.N., and Cairns, E.J. (1996) J. Electrochem. Soc. 143, L136.CrossRefGoogle Scholar
  14. 14.
    Julien, C., Massot, M., Perez-Vicente, C., Haro-Poniatowski, E., Nazri, G.A., and Rougier, A. (1998) Mat. Res. Soc. Symp. Proc. 496, 415.CrossRefGoogle Scholar
  15. 15.
    Julien, C., Rougier, A., Haro-Poniatowski, E., and Nazri, G.A. (1998) Mol. Cryst. Liq. Cryst. 311, 81.CrossRefGoogle Scholar
  16. 16.
    Julien, C. (2000) Solid State Ionics 136-137, 887.CrossRefGoogle Scholar
  17. 17.
    Strohmeier, B.R. and Hercules, D.M. (1984) J. Phys. Chem. 88, 4923.CrossRefGoogle Scholar
  18. 18.
    Kapteijn, F., van Langeveld, A.D., Moulijn, J.A., Andreini, A., Vuurman, M.A., Turek, A.M., Jehng, J.M., and Washs, I.E. (1994) J. Catal. 150, 94.CrossRefGoogle Scholar
  19. 19.
    White, W.B. and Keramidas, V.G. (1972) Spectrochim. Acta 28A 501.Google Scholar
  20. 20.
    Chou, H.H. and Fan, H.Y. (1976) Phys. Rev. B 13, 3924.CrossRefGoogle Scholar
  21. 21.
    Gosztola, D. and Weaver, M.J. (1989) J. Electroanal. Chem. Interf. Electrochem. 271, 141.CrossRefGoogle Scholar
  22. 22.
    Bernard, M.C., Hugot-Le Goff, A., Thi, B.V., and Cordoba de Torresi, S. (1993) J. Electrochem. Soc. 140, 3065.CrossRefGoogle Scholar
  23. 23.
    Lopez de Mishima, B.A., Ohtsuka, T., and Sato, N. (1988) J. Electroanal. Chem. 243, 219.CrossRefGoogle Scholar
  24. 24.
    Lutz, H.D., Muller, B., and Steiner, H.J. (1991) J. Solid State Chem. 90, 54.CrossRefGoogle Scholar
  25. 25.
    Buciuman, F., Patcas, F., Craciun, R., and Zahn, D.R.T. (1999) Phys. Chem. Chem. Phys. 1, 185.CrossRefGoogle Scholar
  26. 26.
    Ammundsen, B., Burns, G.R., Islam, M.S., Kanoh, H., and Roziere, J. (1999) J. Phys. Chem. B 103, 5175.CrossRefGoogle Scholar
  27. 27.
    Fernandes, J.B., Desai, B., and Kamat Dalai, V.N. (1983) Electrochim. Acta 28, 309.CrossRefGoogle Scholar
  28. 28.
    Gattow, G. and Glemser, O. (1961) Z Anorg. Allg. Chem. 309, 121.CrossRefGoogle Scholar
  29. 29.
    Glemser, O., Gattow, G., and Meisiek, H. (1961) Z Anorg. Allg. Chem. 309, 1.CrossRefGoogle Scholar
  30. 30.
    Kolta, G.A., Abdel Kerim, F.M., and Abdul Azim, A.A. (1971) Z. Anorg. Allg. Chem. 384, 260.CrossRefGoogle Scholar
  31. 31.
    Ishii, M., Nakahira, M., and Yamanaka, T. (1972) Solid State Commun. 11, 209.CrossRefGoogle Scholar
  32. 32.
    Filiaux, F., Cachet, C.H., Ouboumour, H., Tomkinson, J., Levy-Clement, C., and Yu, L.T. (1993) J. Electrochem. Soc. 140, 585.CrossRefGoogle Scholar
  33. 33.
    Swinkels, D.A.J., Anthony, K.E., Fredericks, P.M., and Osborn, P.R. (1984) J. Electroanal. Chem. 168, 433.CrossRefGoogle Scholar
  34. 34.
    Amarilla, J.M., MacLean, L.A.H., Tedjar, F., Le Cras, F., Strobel, P., and Poinsignon, C. (1995) Mat. Res. Soc. Symp. Proc. 369, 87.CrossRefGoogle Scholar
  35. 35.
    Turner, S. and Buseck, P.R. (1981) Science 212, 1024.CrossRefGoogle Scholar
  36. 36.
    Li, L. and Pistoia, G. (1991) Solid State Ionics 47, 231.CrossRefGoogle Scholar
  37. 37.
    Sarciaux, S., Le Gal La Salle, A., Verbaere, A., Piffard Y., and Guyomard, G. (1999) Mat. Res. Soc. Symp. Proc. 548, 251.CrossRefGoogle Scholar
  38. 38.
    Tarascon, J.M. and Guyomard, G. (1991) J. Electrochem. Soc. 138, 2864.CrossRefGoogle Scholar
  39. 39.
    Manthiram, A. and Kim, J. (1998) Chem. Mater. 10, 2895.CrossRefGoogle Scholar
  40. 40.
    De Wolff, P.M. (1959) Acta Crystallogr. 12, 341.CrossRefGoogle Scholar
  41. 41.
    Chabre, Y. and Pannetier, J. (1995) Prog. Solid State Chem. 23, 1.CrossRefGoogle Scholar
  42. 42.
    Zachau-Christiansen, B., West, K., Jacobson, T., and Skaarup, S. (1994) Solid State Ionics 70-71, 401.CrossRefGoogle Scholar
  43. 43.
    White, W.B. and DeAngelis, B.A. (1967) Spectrochim. Acta A 23, 985.CrossRefGoogle Scholar
  44. 44.
    Julien, C., Gendron, F., Ziolkiewicz, S., and Nazri, G.A. (1999) Mat. Res. Soc. Symp. Proc. 548, 187.CrossRefGoogle Scholar
  45. 45.
    Tarte, P. (1967) J. Inorg. Nucl. Chem. 29, 915.CrossRefGoogle Scholar
  46. 46.
    Julien, C., Rougier, A., and Nazri, G.A. (1997) Mater. Res. Soc. Symp. Proc. 453, 647.CrossRefGoogle Scholar
  47. 47.
    Julien, C. (2001) Mater Sci. Eng. B (to be published).Google Scholar
  48. 48.
    Thackeray, M.M. (1997) Prog. Solid State Chem. 25, 1.CrossRefGoogle Scholar
  49. 49.
    David, W.I.F., Thackeray, M.M., Bruce, P.G., and Goodenough, J.B. (1987) J. Solid State Chem. 67, 316.CrossRefGoogle Scholar
  50. 50.
    Preudhomme, J. and Tarte, P. (1971) Spectrochim. Acta A 27, 845.CrossRefGoogle Scholar
  51. 51.
    Lutz, H.D., Becker, W., Muller, B., and Jung, M. (1989) J. Raman Spectrosc. 20, 99.CrossRefGoogle Scholar
  52. 52.
    Exarhos, G.J., and Risen, W.N. (1972) Solid State Commun. 11, 755.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • C. Julien
    • 1
  • M. Massot
    • 2
  1. 1.Laboratoire des Milieux Désordonnés et Hétérogènes, UMR 7603Université Pierre et Marie CurieFrance
  2. 2.Laboratoire de Physique des Milieux Condensés, UMR 7602Université Pierre et Marie CurieFrance

Personalised recommendations