Skip to main content

In Situ Preparation of Composite Electrodes: Antimony Alloys and Compounds

  • Chapter
New Trends in Intercalation Compounds for Energy Storage

Part of the book series: NATO Science Series ((NAII,volume 61))

Abstract

Some decades ago, binary lithium alloys with elements such as Sb and Sn were proposed as candidates to replace lithium metal anodes (Weppner and Huggins, 1977, Wen and Huggins 1981, Wang et al. 1986). Due to the lithium-rich compositions that can be reached in some of these intermetallic phases (e.g. Li3Sb and Li22Sn5) high capacities are observed during the first discharge. Moreover, the undesirable properties of lithium metal electrodes such as dendrite formation and hydrogen evolution during cycling were avoided. Nevertheless, the best performances were obtained above room temperature, as the reversible capacity was commonly lost in a reduced number of cycles when using the massive metals as starting material. Such effect is mostly due to dramatic changes in volume during alloying leading to an electrochemical grinding and electrical isolation of the resulting particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, S., Kim, Y., Kim, K.J., Kim, T.H, Lee, H. and Kim, M.H. (1999), “Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives”, J. Power Sources 81-82, 896–901.

    Article  Google Scholar 

  • Alcántara, R. Fernández-Madrigal F.J., Lavela, P. Tirado, J.L. Jumas J.C. and Olivier-Fourcade J. (1999), “Electrochemical reaction of lithium with the CoSb3 skutterudite”, J. Mater. Chem. 9, 2517–2521.

    Article  Google Scholar 

  • Aurbach, D., Markovsky, B., Levi, M.D., Levi, E., Schechter, A., Moshkovic, M. and Cohen, Y. (2000), “New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries”, J. Power Sources 81-82, 95–111.

    Article  Google Scholar 

  • Besenhard, J.O., Wachtler, M., Winter, M., Andreaus, R., Rom, I. and Sitte, W. (1999), “Kinetics of Li insertion into polycrystalline and nanocrystalline SnSb alloys investigated by transient and steady state techniques”, J. Power Sources, 81-82, 268–272.

    Article  Google Scholar 

  • Chouvin, J., Olivier Fourcade, J., Jumas, J.C., Simon, B., Biensan, Ph., Fernández Madrigal, F.J., Tirado J.L. and Pérez Vicente, C. (2000), “SnO reduction in lithium Cells: study by X-ray Absorption, 119Sn Mössbauer spectroscopy and X-ray diffraction”, J. Electroanal. Chem. 494, 136–146.

    Article  Google Scholar 

  • Fernández-Madrigal, F.J., Lavela, P., Pérez-Vicente, C. and Tirado, J.L. (2001), “Electrochemical reactions of polycrystalline CrSb2 in lithium batteries”, J. Electroanal. Chem. 501, 205–209.

    Article  Google Scholar 

  • Hyde, B.G. and Andersson, S. (1989), Inorganic Crystal Structures, J. Wiley & Sons, New York.

    Google Scholar 

  • Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y. and Miyasaka, T. (1997), ”Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material”, Science, 276, 1395–1397.

    Article  Google Scholar 

  • Kjekshus, A., Nicholson, D.G. and Rakke, T. (1973), “Compounds with the skutterudite type crystal structure. I. On Oftedal's relation”, Acta Chem. Scand. 27, 1307–1314.

    Article  Google Scholar 

  • Kjekshus, A., Nicholson, D.G. and Rakke, T. (1973), “Compounds with the skutterudite type crystal structure. II. The 121Sb Mössbauer effect in CoSb3, Fe0.5Ni0.5Sb3, RhSb3, and IrSb3”, Acta Chem. Scand. 27, 1315–1320.

    Article  Google Scholar 

  • Kjekshus, A. and Rakke, T, (1974), “Compounds with skutterudite type crystal structure. III. Structural data for arsenides and antimonides”, Acta Chem. Scand. A 28, 99–103.

    Article  Google Scholar 

  • Larcher, D., Beaulieu, L.Y., Mao, O., George, A.E. and Dahn, J.R. (2000), “Study of the reactions of lithium with isostructural A2B and various A1xB alloys”, J. Electrochem. Soc. 147, 1703–1708.

    Article  Google Scholar 

  • Wang, J., Raistrick, I.D. and Huggins, R.A. (1986), “Behavior of some binary lithium alloys as negative electrodes in organic solvent-based electrolytes” J. Electrochem. Soc. 133, 457–460.

    Article  Google Scholar 

  • Wen, C.J. and Huggins, R.A. (1981), “Thermodynamic study of the lithium-tin system”, J. Electrochem. Soc. 128, 1181–1187.

    Article  Google Scholar 

  • Weppner, W. and Huggins, R.A. (1977), “Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb”, J. Electrochem. Soc.124, 1569–1578.

    Article  Google Scholar 

  • Yang, J., Takeda, Y., Imanishi, N. and Yamamoto, O., (2001), “Novel composite anodes based on nano-oxides and Li2.6Co0.4N for lithium ion batteires”, Electrochim. Acta 46, 2659–2664.

    Article  Google Scholar 

  • Zheng T., Xue, J.S. and Dahn, J.R. (1996) “Lithium Insertion in Hydrogen-Containing Carbonaceous Materials”, Chem. Mater., 8, 389–393.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alcántara, R., Fernández Madrigal, F.J., Lavela, P., Pérez Vicente, C., Tirado, J.L. (2002). In Situ Preparation of Composite Electrodes: Antimony Alloys and Compounds. In: Julien, C., Pereira-Ramos, J.P., Momchilov, A. (eds) New Trends in Intercalation Compounds for Energy Storage. NATO Science Series, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0389-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0389-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0595-4

  • Online ISBN: 978-94-010-0389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics