The role of regulated protein degradation in auxin response

  • Sunethra Dharmasiri
  • Mark Estelle


Auxin-regulated gene expression is mediated by two families of transcription factors. The ARF proteins bind to a conserved DNA sequence called the AuxRE and activate, transcription. The Aux/IAA proteins repress ARF function, presumably by forming dimers with ARF proteins. Recent genetic studies in Arabidopsis indicate that auxin regulates this system by promoting the ubiquitin-mediated degradation of the Aux/IAA proteins, thus permitting ARF function. Mutations in components of SCFTIR1, a ubiquitin protein ligase (E3) result in stabilization of Aux/IAA proteins and decreased auxin response. Further, recent biochemical experiments indicate that the Aux/IAA proteins bind SCFTIR1 in an auxin-dependent manner.

Key words

auxin cullin Nedd8 RUB SCF ubiquitin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, S., Oeller, P.W. and Theologis, A. 1994. Early auxin-induced genes encode short-lived nuclear proteins. Proc. Natl. Acad. Sci. USA 91: 326–330.PubMedCrossRefGoogle Scholar
  2. Abel, S. and Theologis, A. 1996. Early genes and auxin action. Plant Physiol. 111:9–17.PubMedCrossRefGoogle Scholar
  3. Callis, J. and Vierstra, R.D. 2000. Protein degradation in signaling. Curr. Opin. Plant Biol. 3: 381–386.PubMedCrossRefGoogle Scholar
  4. Carrano, A.C., Eytan, E., Hershko, A. and Pagano, M. 1999. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1: 193–199.PubMedCrossRefGoogle Scholar
  5. Colon-Carmona, A., Chen, D.L., Yeh, K.C. and Abel, S. 2000. Aux/IAA proteins are phosphorylated by phytochrome in vitro.Plant Physiol. 124: 1728–1738.Google Scholar
  6. del Pozo, J.C. and Estelle, M. 1999. The Arabidopsis cullin AtCULl is modified by the ubiquitin-related protein RUB1. Proc. Natl. Acad. Sci. USA 96: 15342–15347.PubMedCrossRefGoogle Scholar
  7. del Pozo, J.C., Timpte, C, Tan, S., Callis, J. and Estelle, M. 1998. The ubiquitin-related protein RUB1 and auxin response in Arabidopsis. Science 280: 1760–1763.PubMedCrossRefGoogle Scholar
  8. del Pozo, J.C., Dharmasiri, S., Hellman, H., Walker, L., Gray, W.M. and Estelle, M., 2002. AXRI-ECRI-dependent conjugation of RUBI to the Arabidopsis Cullin AtCull is required for auxin response. Plant Cell (in press).Google Scholar
  9. Dieterle, M., Zhou, Y.C., Schafer, E., Funk, M. and Kretsch, T. 2001. EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes Dev. 15: 939–944.PubMedCrossRefGoogle Scholar
  10. Freed, E., Lacey, K.R., Huie, P., Lyapina, S.A., Deshaies, R.J., Stearns, T. and Jackson, P.K. 1999. Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Genes Dev. 13: 2242–2257.PubMedCrossRefGoogle Scholar
  11. Galan, J.M., Wiederkehr, A., Seol, J.H., Haguenauer-Tsapis, R., Deshaies, R.J., Riezman, H. and Peter, M. 2001. Skplp and the F-box protein Rcylp form a non-SCF complex involved in recycling of the SNARE Snclp in yeast. Mol. Cell Biol. 21: 3105–3117.PubMedCrossRefGoogle Scholar
  12. Gray, W.M. and Estelle, I. 2000. Function of the ubiquitin-proteasome pathway in auxin response. Trends Biochem. Sci. 25: 133–138.PubMedCrossRefGoogle Scholar
  13. Gray, W.M., del Pozo, J.C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., Crosby, W.L., Yang, M., Ma, H. and Estelle, M. 1999. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 13: 1678–1691.PubMedCrossRefGoogle Scholar
  14. Gray, W.M., Kepinski, S., Rouse, D., Leyser, O., and Estelle, M., 2001. Auxin regulates SCFTIR1 —dependent degradation of AUX/IAA proteins. Nature 414: 271–276.PubMedCrossRefGoogle Scholar
  15. Guilfoyle, T., Hagen, G., Ulmasov, T. and Murfett, J. 1998. How does auxin turn on genes? Plant Physiol. 118: 341–347.PubMedCrossRefGoogle Scholar
  16. Hershko, A. and Ciechanover, A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67: 425–479.PubMedCrossRefGoogle Scholar
  17. Hobbie, L. and Estelle, M. 1995. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 7: 211–220.PubMedCrossRefGoogle Scholar
  18. Hobbie, L., Timpte, C. and Estelle, M. 1994. Molecular genetics of auxin and cytokinin. Plant Mol. Biol. 26: 1499–1519.PubMedCrossRefGoogle Scholar
  19. Hochstrasser, M. 2000. Evolution and function of ubiquitin-like protein-conjugation systems. Nature Cell Biol. 2: E153–E157.PubMedCrossRefGoogle Scholar
  20. Kamura, T., Conrad, M.N., Yan, Q., Conaway, R.C. and Conaway, J.W. 1999. The Rbxl subunit of SCF and VHL E3 ubiquitin ligase activates Rubl modification of cullins Cdc53 and Cul2. Genes Dev. 13: 2928–2933.PubMedCrossRefGoogle Scholar
  21. Kipreos, E.T. and Pagano, M. 2000. The F-box protein family. Genome Biol. 1 (2000).Google Scholar
  22. Lammer, D., Mathias, N., Laplaza, J.M., Jiang, W., Liu, Y., Callis, J., Goebl, M. and Estelle, M. 1998. Modification of yeast Cdc53p by the ubiquitin-related protein rublp affects function of the SCFCdc4 complex. Genes Dev. 12: 914–926.PubMedCrossRefGoogle Scholar
  23. Leyser, H.M., Lincoln, C.A., Timpte, C., Lammer, D., Turner, J. and Estelle, M. 1993. Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme El. Nature 364: 161–164.PubMedCrossRefGoogle Scholar
  24. Lincoln, C., Britton, J.H. and Estelle, M. 1990. Growth and development of the axrl mutants of Arabidopsis. Plant Cell 2: 1071–1080.PubMedGoogle Scholar
  25. Liscum, E. and Reed, J.W. 2002. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol. Biol. 49: 387–400.PubMedCrossRefGoogle Scholar
  26. Lyapina, S., Cope, G., Shevchenko, A., Serino, G., Tsuge, T, Zhou, C., Wolf, D.A., Wei, N. and Deshaies, R.J. 2001. Promotion of NEDD8-CUL1 conjugate cleavage by COP9 signalosome. Science 292: 1382–1385.PubMedCrossRefGoogle Scholar
  27. Morimoto, M., Nishida, T., Honda, R. and Yasuda, H. 2000. Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCF(skp2) toward p27(kipl). Biochem. Biophys. Res. Comm. 270: 1093–1096.PubMedCrossRefGoogle Scholar
  28. Nagpal, P., Walker, L.M., Young, J.C., Sonawala, A., Timpte, C., Estelle, M. and Reed, J.W. 2000. AXR2 encodes a member of the Aux/IAA protein family [In Process Citation]. Plant Physiol. 123: 563–574.PubMedCrossRefGoogle Scholar
  29. Nelson, D.C., Lasswell, J., Rogg, L.E., Cohen, M.A. and Bartel, B. 2000. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101: 331–340.PubMedCrossRefGoogle Scholar
  30. Patton, E.E., Willems, A.R. and Tyers, M. 1998. Combinatorial control in ubiquitin-dependent proteolysis: don’t Skp the F-box hypothesis. Trends Genet. 14: 236–243.PubMedCrossRefGoogle Scholar
  31. Podust, V.N., Brownell, J.E., Gladysheva, T.B., Luo, R.S., Wang, C., Coggins, M.B., Pierce, J.W., Lightcap, E.S. and Chau, V. 2000. A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kipl by ubiquitination. Proc. Natl. Acad. Sci. USA 97: 4579–4584.PubMedCrossRefGoogle Scholar
  32. Rao-Naik, C., delaCruz, W., Laplaza, J.M., Tan, S., Callis, J. and Fisher, A.J. 1998. The rub family of ubiquitin-like proteins. Crystal structure of Arabidopsis rubl and expression of multiple rubs in Arabidopsis. J. Biol. Chem. 273: 34976–34982.PubMedCrossRefGoogle Scholar
  33. Read, M.A., Brownell, J.E., Gladysheva, T.B., Hottelet, M., Parent, L.A., Coggins, M.B., Pierce, J.W., Podust, V.N., Luo, R.S., Chau, V. and Palombella, V.J. 2000. Nedd8 modification of cul-1 activates SCF(ß(TrCP))-dependent ubiquitination of IκBα. Mol. Cell Biol. 20: 2326–2333.PubMedCrossRefGoogle Scholar
  34. Rogg, L.E., Lasswell, J. and Bartel, B. 2001. A gain-of-function mutation in iaa28 suppresses lateral root development. Plant Cell 13: 465–480.PubMedGoogle Scholar
  35. Rouse, D., Mackay, P., Stirnberg, P., Estelle, M. and Leyser, O. 1998. Changes in auxin response from mutations in an AUX/IAA gene. Science 279: 1371–1373.PubMedCrossRefGoogle Scholar
  36. Ruegger, M., Dewey, E., Gray, W.M., Hobbie, L., Turner, J. and Estelle, M. 1998. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grrlp. Genes Dev. 12: 198–207.PubMedCrossRefGoogle Scholar
  37. Samach, A., Klenz, J.E., Kohalmi, S.E., Risseeuw, E., Haughn, G.W. and Crosby, W.L. 1999. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J. 20: 433–445.PubMedCrossRefGoogle Scholar
  38. Schwechheimer, C., Serino, G., Callis, J., Crosby, W.L., Lyapina, S., Deshaies, R.J., Gray, W.M., Estelle, M. and Deng, X.W. 2001. Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIR1 in mediating auxin response. Science 292: 1379–1382.PubMedCrossRefGoogle Scholar
  39. Somers, D.E., Schultz, T.F., Milnamow, M. and Kay, S.A. 2000. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101: 319–329.PubMedCrossRefGoogle Scholar
  40. Tanaka, K., Kawakami, T., Tateishi, K., Yashiroda, H. and Chiba, T. 2001. Control of IκBα proteolysis by the ubiquitin-proteasome pathway. Biochimie 83: 351–356.PubMedCrossRefGoogle Scholar
  41. Tian, Q. and Reed, J.W. 1999. Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126: 711–721.PubMedGoogle Scholar
  42. Tyers, M. and Willems, A.R. 1999. One ring to rule a superfamily of E3 ubiquitin ligases [comment]. Science 284: 601, 603, 604.PubMedCrossRefGoogle Scholar
  43. Ulmasov, T., Murfett, J., Hagen, G. and Guilfoyle, T.J. 1997. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9: 1963–1971.PubMedGoogle Scholar
  44. Ulmasov, T., Hagen, G. and Guilfoyle, T.J. 1999. Activation and repression of transcription by auxin-response factors. Proc. Natl. Acad. Sci. USA 96: 5844–5849.PubMedCrossRefGoogle Scholar
  45. Vierstra, R.D. and Callis, J. 1999. Polypeptide tags, ubiquitous modifiers for plant protein regulation. Plant Mol. Biol. 41: 435–442.PubMedCrossRefGoogle Scholar
  46. Wei, N. and Deng, X.W. 1999. Making sense of the COP9 signalosome. A regulatory protein complex conserved from Arabidopsis to human. Trends Genet. 15: 98–103.PubMedCrossRefGoogle Scholar
  47. Worley, C.K., Zenser, N., Ramos, J., Rouse, D., Leyser, O., Theologis, A. and Callis, J. 2000. Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J. 21: 553–562.PubMedCrossRefGoogle Scholar
  48. Wu, K., Chen, A. and Pan, Z.Q. 2000. Conjugation of Nedd8 to CUL1 enhances the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. J. Biol. Chem. 275: 32317–32324.PubMedCrossRefGoogle Scholar
  49. Xie, D.X., Feys, B.F., James, S., Nieto-Rostro, M. and Turner, J.G. 1998. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280: 1091–1094.PubMedCrossRefGoogle Scholar
  50. Yang, M., Hu, Y., Lodhi, M., McCombie, W.R. and Ma, H. 1999. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc. Natl. Acad. Sci. USA 96: 11416–11421.PubMedCrossRefGoogle Scholar
  51. Yeh, E.T., Gong, L. and Kamitani, T. 2000. Ubiquitin-like proteins: new wines in new bottles. Gene 248: 1–14.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Sunethra Dharmasiri
    • 1
  • Mark Estelle
    • 1
  1. 1.Institute for Cellular and Molecular Biology, Section of Molecular Cell and Developmental BiologyUniversity of Texas at AustinAustinUSA

Personalised recommendations