Advertisement

Ruthenium Catalysts for Ring-Opening Metathesis Polymerization (ROMP) and Related Chemistry

  • A. Muhlebach
  • P. A. Van Der Schaaf
  • A. Hafner
  • R. Kolly
  • F. Rime
  • H.-J. Kimer
Part of the NATO Science Series book series (NAII, volume 56)

Abstract

Ring-opening metathesis polymerization (ROMP), ring-closing metathesis (RCM) and ring-opening cross metathesis (RO/CM) are interesting methods to synthesize polymers with attractive mechanical and electrical properties, and specialty chemicals. Ruthenium and osmium based catalysts are water stable and possess a remarkable tolerance towards most functional groups. Whereas the first generation of well defined ruthenium based ROMP catalysts, cationic complexes like Ru(H2O)6tos2 (tos=toluene-4-sulfonate) and Ru(arene)2tos2 (activated by UV-irradiation) showed much lower reactivities as compared to “activated” early transition metal catalysts, Ru-phosphine complexes like RuCl2(p-MeC6H4CHMe2)(PCy3) (1, Cy=cyclohexyl) developed by Ciba SC and later Ru-phoshine-carbenes, developed by Grubbs et al. and Ciba SC are able to polymerize a large range of cycloolefins including DCPD (in technical quality and in mixtures with additives and fillers) very efficiently. The new classes of ruthenium carbene complexes are accessible by a novel synthesis which avoids the use of hydrogen gas and is therefore easy to scale up. Catalyst reactivities in ROMP of different monomers (characterized in terms of their turn-over frequencies (TOF) and compared with other catalysts for olefin polymerization), in RCM and RO/CM are very much dependent on the ligand sphere and the type of monomer used. Polymerizations were conducted in bulk, solution and dispersion with a large range of non-functionalized and functionalized 2-norbornene derivatives to obtain linear and crosslinked homo- and copolymers (block and random) which may find useful applications in the near future.

Keywords

Mold Temperature Phenyl Acetylene Turnover Frequency Ruthenium Catalyst Irganox 1076 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ivin, K.J. and Mol, J.C. (1996) Olefin Metathesis and Metathesis Polymerization, Academic Press, London.Google Scholar
  2. 2.
    Bell, A. (1992) J. Mol. Catal. 76, 165.CrossRefGoogle Scholar
  3. 3.
    Goodall, B.L., Kroenke, W.J., Minchak, R.J. and Rhodes, L.F. (1993) J. Appl. Polym. Sci. 47, 607.CrossRefGoogle Scholar
  4. 4.
    Schaverien, C.J., Dewan, J.C. and Schrock, R.R. (1986) J. Am. Chem. Soc. 108, 2771.CrossRefGoogle Scholar
  5. 5.
    Novak, B.M. and Grubbs, R.H. (1988) J. Am. Chem. Soc. 110, 960.CrossRefGoogle Scholar
  6. 6.
    In fact, it was reported that DCPD is a poison for ruthenium-initiated ROMP: Tanielian, C., Kiennemann, A. and Osparpucu, T. (1979) Can. J. Chem. 57, 2022.CrossRefGoogle Scholar
  7. 7.
    Hafner, A., Muehlebach, A. and van der Schaaf, P.A. (1997) Angew. Chem. Int. Ed. Engl. 36, 2121.CrossRefGoogle Scholar
  8. 8.
    Hafner, A., van der Schaaf, P.A. and Muehlebach, A. US-P 5, 998,326 (Ciba S.C.), Prio: 23.5.97.Google Scholar
  9. 9.
    Irgafos TNPP is a liquid processing stabilizer for styrenics, PUR and elastomers.Google Scholar
  10. 10.
    Schwab, P., France, M.B., Ziller, J.W. and Grubbs, R.H. (1995) Angew. Chem. 107, 2179; (1995) Angew. Chem. Int. Ed. Engl. 34, 2039.CrossRefGoogle Scholar
  11. 11.
    Muehlebach, A., van der Schaaf, P.A. and Hafner, A. EP 891, 384 (Ciba S.C.), prio. 4.4.96.Google Scholar
  12. 12.
    Gruenwald, C., Gevert, O., Wolf, J., Gonzales-Herrero, P. and Werner, H. (1996) Organometallics, 15, 1960; Wolf, J., Stuer, W., Gruenwald, C., Werner, H., Schwab, P. and Schulz, M. (1998) Angew. Chem., Int. Ed. Engl.37, 1124.CrossRefGoogle Scholar
  13. 13.
    Wilhelm, T.E., Belderrain, T.R., Brown, S.N. and Grubbs, R.H. (1997) Organolmetallics 16, 3867; Grubbs, R.H., Belderrain, T.R., Brown, S.N. and Wilhelm, T.E. WO Pat. 98 21, 214 (CalTech) [Chem. Abstr. 1998, 129, 41513].CrossRefGoogle Scholar
  14. 14.
    van der Schaaf, P.A., Kolly, R., Hafner, A. and Muehlebach, A. EP Pat. 839,821 (Ciba SC) [Chem. Abstr. 1998, 129, 41274].Google Scholar
  15. 15.
    Burrow, T., Sabo-Etienne, S. and Chaudret, B. (1995) Inorg. Chem. 34, 2470.CrossRefGoogle Scholar
  16. 16.
    Esteruelas, M.A., Lahoz, F.J., Onate, E., Oro, L.A., Valero, C. and Zeier, B. (1995) J. Am. Chem. Soc. 117, 7935.CrossRefGoogle Scholar
  17. 17.
    van der Schaaf, P.A., Kolly, R. and Hafner, A. (2000) Chem. Commun. 1045.Google Scholar
  18. 18.
    Similar results were obtained earlier with 2-norbornene mono-and diesters.Google Scholar
  19. 19.
    See e.g. Kanaoka, S. and Grubbs, R.H. (1995) Macromolecules 28, 4707.CrossRefGoogle Scholar
  20. 20.
    van der Schaaf, P.A., Kolly, R., Kirner, H.-J., Rime, F., Mühlebach, A. and Hafner, A. J. Organomet. Chem., in press.Google Scholar
  21. 21.
    Tetradecylnorbornene (C14-NBE; yield: 22%, liquid, b.p. 125-130°C at p=0.018 mbar, m.p. +4°C, GCpurity: >95%, mixture of isomers), a new norbornene-type monomer with long alkyl chain, was synthesized from 1-hexadecene and cyclopentadiene (CDP). It is an interesting (co)monomer for ROMP and especially vinyl-addition polymerization, where the insolubility of the resulting polymers poses serious problems to polymer analysis. C14-TD (yield: 13%, purity: >80%, mixture of isomers) was isolated as by-product.Google Scholar
  22. 22.
    Dias, E.L., Nguyen, S.T. and Grubbs, R.H. (1997) J. Am. Chem. Soc. 119, 3887.CrossRefGoogle Scholar
  23. 23.
    a) Lynn, D.M., Mohr, B. and Grubbs, R.H. (1998) Polym. Prepr. 39, 278. b) Lynn, D.M., Mohr, B. and Grubbs, R.H. (1998) J. Am. Chem. Soc. 120, 1627. c) Lynn, D.M, Dias, E.L., Grubbs, R.H. and Mohr, B.Patent WO 99/22865.Google Scholar
  24. 24.
    van der Schaaf, P.A., Mühlebach, A. and Hafner, A. Patent WO 99/00397.Google Scholar
  25. 25.
    Rinehart, R.E. (1969) J. Polym. Sci. Part C., 27, 7.CrossRefGoogle Scholar
  26. 26.
    Lynn, D.M., Kanaoka, S. and Grubbs, R.H. (1996) J. Am. Chem. Soc. 118, 784.CrossRefGoogle Scholar
  27. 27.
    In a typical example 431 g ethylene glycol (Merck, p.a.) was mixed in a 750 ml reaction vessel with mechanical stirring and N2 inlet/outlet with 2.66 g of a 50% solution of lauryl-dimethyl-benzylammonium chloride in water (cationic emulgator from Henkel) and 12.92 g hydroxypropyl cellulose (protecting colloide, Klucel E, Aqualon). The mixture was heated to 100°C for 5 min (to homogenize) and cooled down to R.T. and purged with nitrogen. Catalysts 1 (100 mg) and 8 (33 mg), dissolved in methylenechloride, were mixed with 33.33 g DCPD (Shell, 94%), containing 66 mg Irganox 1076 (antioxidant from Ciba SC). The catalyst/monomer mixture was than added to the ethyleneglycol/emulgator/protecting colloide mixture and stirred (ca. 700 rpm) 20 min at R.T., 1 h at 45°C, 2h at 65°C, 1h at 85°C and 2.5 h at 105°C. After cooling to R.T., the reaction mixture was filtered, washed with water, the solid polymer stirred 30 min with 300 ml water and again filtered. The poly(DCPD) powder was than dried 14 h at 50°C in vacuo (p<0.1 mbar). Yield: 27.3 g (82%) of a white powder. Elemental analysis: calc.: C 90.84% H 9.15%, found: C 90.11% H 9.33%.Google Scholar
  28. 29.
    Muehlebach, A., van der Schaaf, P.A., Hafner, A. and Setiabudi, F. (1998) J. Mol. Catal. 132, 181.CrossRefGoogle Scholar
  29. 30.
    Muehlebach, A. unpublished results.Google Scholar
  30. 31.
    Delia Martina, A., Hilborn, J.G. and Mühlebach, A. (2000) Macromolecules 33, 2916.CrossRefGoogle Scholar
  31. 32.
    The initiation step is probably much faster, because the active species has not to be generated in situ (by ligand exchange and oxidative addition).Google Scholar
  32. 33.
    Kurosawa, H., Emoto, M., Urabe, A., Miki, K. and Kasai, N. (1985) J. Am. Chem. Soc. 107, 8253.CrossRefGoogle Scholar
  33. 34.
    1 was designed as cheap, latent catalyst for the polymerization of DCPD in the bulk. It is not suitable for the polymerization of functionalized cycloolefins in solution.Google Scholar
  34. 35.
    It turned out that the right choice of solvent is extremely important to obtain living ROMP. Chlorinated hydrocarbons are best (e.g. chlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, CH2Cl2, 1,1,2-trichloroethane; yields: >90%; PDI:<1.3), followed by esters (e.g. ethylacetate, γ-butyrolactone; yields: 70-80%; PDI: 1.2-1.5) and ethers (dimethoxyethane, THF; yields: <40%; PDI: 1.3-1.5). Ketones (e.g. methyl-ethylketone, cyclopentanone), amides (e.g. DMF, N-methyl-pyrrolidone) and sulfoxides (e.g. sulfolane, DMSO) gave no isolatable yields.Google Scholar
  35. 36.
    For a good review article see Schuster, M. and Blechert, S. (1997) Angew. Chem. 109, 2124.CrossRefGoogle Scholar
  36. 37.
    Nicolaou, K.C., He, Y., Vourloumis, D. and Vallberg, H. (1997) J. Am. Chem. Soc. 119, 7960.CrossRefGoogle Scholar
  37. 38.
    Schneider, M.F., Lucas, N., Velder, J. and Blechert, S. (1997) Angew. Chemie 109, 257.CrossRefGoogle Scholar
  38. 39.
    van der Schaaf, P.A., Mühlebach, A., Hafner, A. and Kolly, R. Patent WO 99/29701 (prio: 4.12.97).Google Scholar
  39. 40.
    Muehlebach, A., Prétôt, R. and van der Schaaf, P.A. manuscript in preparation.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • A. Muhlebach
    • 1
  • P. A. Van Der Schaaf
    • 1
  • A. Hafner
    • 1
  • R. Kolly
    • 1
  • F. Rime
    • 1
  • H.-J. Kimer
    • 1
  1. 1.Ciba Specialty Chemicals Inc.BaselSwitzerland

Personalised recommendations