Crystalline Micro Undulator

  • R. O. Avakian
  • K. T. Avetyan
  • K. A. Ispirian
  • E. A. Melikyan
Part of the NATO Science Series book series (NAII, volume 49)

Abstract

A simple method of obtaining crystalline undulators (CU) is proposed using the curvature arising when a very thin layer of GexSi1-x is epitaxially grown on a thin Si substrate. The calculations show that assembling many such bilayers it is possible to obtain CU with periodical deformed crystallographic planes which according to recent theories can serve as an exclusive radiator for high energy positrons channeled in them.

Keywords

GaAs Hull Channeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brinkman, R. et al, (1997) Conceptual Design of a 500 GeV e+ e- Linear Collider with Integrated X-Ray Laser Facility, DESY 1997-048/ECFA 1997-182.Google Scholar
  2. 2.
    Arthur, J. et al, (1998) LCLS, Design Study Report, SLAC-R-521/UC-414.Google Scholar
  3. 3.
    Rullhusen, R., Artru, A. and Dhez, P.(1998) Novel Radiation Sources Using Relativistic Electrons, World Scientific, Singapore.CrossRefGoogle Scholar
  4. 4.
    Kaplin, V.V., Plotnikov, S.V. and Vorobiev, S.A., (1980) Radiation by charged particles channeled in deformed crystals, Zh. Tekh.Fiz. 50, 1079–1081.Google Scholar
  5. 5.
    Barishevsky, V.G., Dubovskaya, I.Ya. and Grubich, A.O. (1980) Generation of $ ***gamma $-quanta by channeled particles in the presence of a variable external field, Phys. Lett., 77A, 61–64ADSGoogle Scholar
  6. 6.
    Ikezi, H., Lin, Y. and Ohkawa, T. (1984) Channeling radiation in a periodically distorted crystal, Phys. Rev., B30, 1567–1568.ADSGoogle Scholar
  7. 7.
    Mkrtchian, A.R., Gasparian, R.A. and Gabrielian, R.G. (1986) Channeled positron radiation in the hypersonic wave field, Phys.Lett. A115, 410–412; (1987) Radiation from channeled positrons in a hypersonic wave field, Zh. Eksp. Teor. Fiz. 93, 432-436.ADSGoogle Scholar
  8. 8.
    Bogacz, S.A. and Ketersom, J.B.(1986) Possibility of obtaining coherent radiation from a solid state undulator, J. Appl. Phys. 60, 177–188.ADSCrossRefGoogle Scholar
  9. 9.
    Amatuni, A.Ts. and Elbakian, S.S. (1988) Radiation as resonance planar dechanneling is approached, Zh. Eksp. Teor. Fiz., 94, 297–301.ADSGoogle Scholar
  10. 10.
    Avakian, A.R. and Yang, A. (1989) Motion of channeled particles in a crystal in the presence of a hypersonic wave, Rad. Effects Express, 2, 195–205.Google Scholar
  11. 11.
    Barishevsky, V.G. and Dubovskaya, I.Ya. (1991) J.Phys.C: Cond. Matt., 3, 2421–2436ADSCrossRefGoogle Scholar
  12. 12.
    Dedkov, G.B.(1994) Channeling radiation in a crystal undergoing an action of ultrasonic or electromagnetic waves, Phys.Stat.Sol.,(b) 184, 535–542.Google Scholar
  13. 13.
    Korol, A.V., Solov’ov, A.V. and Greiner, W. (1998) Coherent radiation of an ultrarelativistic charged particle channeled in a periodically bent crystal, J.Phys.G: Nucl. Part. Phys., L45–L53; (1999) Photon emission by an ultra-relativistic particle channeling in a periodically bent crystal, Intern Journ. of Mod. Phys., 8, 49-100.Google Scholar
  14. 14.
    Avakian, R.O., Gevorgian, L.G., Ispirian K.A. and Ispirian, R.K. (1998) Radiation from particles in crystal undulators taking into account the polarization of the medium, Pisma, Zh. Eksp. Teor. Fiz., 68, 437–441; (2001) Spontaneous and stimulated radiation of particles in crystalline and nanotube undulators, Nucl. Instr and Meth., B173, 112-120.Google Scholar
  15. 15.
    Proc. of IXX Intern. Free Electron Laser Conf. and IV FEL users workshop, Beijing, China, 1997, Nucl. Instr. And Meth. A398, Articles on p.p. 374–454.Google Scholar
  16. 16.
    Picraux, S.T., Dawson, L.R., Osbourn G.C. and Chu, W.K. (1983) Ion channeling studies of InGaAs/GaAs strained-layer superlattices, Appl. Phys. Lett., 43, 930–932.ADSCrossRefGoogle Scholar
  17. 17.
    Breese, M.B.H. (1997) Beam bending using graded composition strained layers, Nucl. Instr. and Meth., B132, 540–547.ADSGoogle Scholar
  18. 18.
    Mikkelsen U. and Uggerhoj E. (2000) A crystalline undulator based on graded composition strained layers in a superlattice, Nucl. Instr. and Meth., B160, 435–439.ADSGoogle Scholar
  19. 19.
    Abrosimov N.V., Rossolenko, S.N., Alex, V., Gerhardt, A. and Schroder, W., (1966) Single crystal growth of Gex Si1-x by Czochralski technique, J. Crystal Growth, 166, 657–662; A. Erko et al, (1996) On the feasibility of employin gradient crystals for high resolution synchrotron optics, Nucl. Instr. and Meth., A374, 408-412; Abrosimov, N.V., Private Communication.CrossRefGoogle Scholar
  20. 20.
    Henein G.E. and Wagner, W.R. (1983) Stressed induced in GaAs by TiPt ohmic contact, J. Appl. Phys., 54, 6395–6400.ADSCrossRefGoogle Scholar
  21. 21.
    Townsend, P.H., Barnett, D.M. and Brunner, T.A. (1987) Elastic relationships in layered composite media with approximation for the case of thin films on a thick substrate, J.Appl. Phys., 62, 4438–4440.ADSCrossRefGoogle Scholar
  22. 22.
    Volkert, C.A., Fitzgerald, E.A., Hull, R., Xie Y.H. and Mii, Y.J., (2000) Strain relaxation in Ge(0.9)Si(0.91) Epitaxial thin films measured by wafer curvature, http://sauvignon.mit.edU/papers/l7/article17.htm.pp.1–6.
  23. 23.
    Kim, M. and Osten, H. (1997) S-Ray photoelectron spectroscopy evaluation of valence band offsets for strained Si1-xGexSi1-yC-y and Si1-x-yGexCy on Si(001), Appl.Phys. Lett., 70, 2702–2705.ADSCrossRefGoogle Scholar
  24. 24.
    People, R. and Bean, J.C. (1985) Calculation of critical layer thickness versus lattice mismatch for GexSi1-x / Si strained-layer heterostructures, Appl.Phys. Lett. 47, 322–324.ADSCrossRefGoogle Scholar
  25. 25.
    Biriukov, V.M., Chesnokov, Yu.A. and Kotov, V.I. (1997) Crystal Channeling and Its Application at High-Energy Accelerators, Springer, Berlin.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • R. O. Avakian
    • 1
  • K. T. Avetyan
    • 1
    • 2
  • K. A. Ispirian
    • 1
  • E. A. Melikyan
    • 1
  1. 1.Yerevan Physics InstituteYerevanArmenia
  2. 2.Yerevan State UniversityYerevanArmenia

Personalised recommendations