Skip to main content

Particle Acceleration in Crystalline and Nanotube Undulators Taking into Account the Medium Polarization

  • Chapter
Book cover Electron-Photon Interaction in Dense Media

Part of the book series: NATO Science Series ((NAII,volume 49))

  • 225 Accesses

Abstract

The possibilities of acceleration of particles channeled in periodically bent single crystals and carbon nanotube microundulators by the method of inverse FEL and plasma wave acceleration are discussed taking into account the influence of polarization. It is shown that acceleration rates of about 10 GeV/cm are achievable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, P. and Noble, R.J. (1997) Crystal channel collider: Ultra-High energy and luminosity in the next century, in S Chattopadhyay, J. McCullogh and P. Dahl (eds.), Advanced Accelerator Concepts, AIP Press, New York,pp.273–285.

    Chapter  Google Scholar 

  2. Hofstadter, R., (1968) The atomic accelerator, Stanford University HEPL Report 560.

    Google Scholar 

  3. Kanofsky, A., (1977) Possibility of particle accelerator by laser beams along crystal channel Axis, Rev. Sci. Instr., 48, 34–36.

    Article  ADS  Google Scholar 

  4. Grishaev, N.A. and Nasonov, N.N. (1977) On the possibility of acceleration of charged particles in crystals, Pisma Zh. Tekhn. Fiz. 3, 1084–1086.

    Google Scholar 

  5. Tajima, T. and Dawson, J.M.(1977) Laser electron accelerator, Phys.Rev.Lett., 43, 267–270.

    Article  ADS  Google Scholar 

  6. Tajima, T. and Cavenago, M. (1987) Crystal X-ray accelerator, Phys.Rev.Lett., 59, 1440–1443.

    Article  ADS  Google Scholar 

  7. Bogacz, S.A. and Ketterson, J.B. (1986) Possibility of obtaining coherent radiation from a solid state undulator, J.Appl.Phys., 60, 177–188.

    Article  ADS  Google Scholar 

  8. Bogacz, S.A., Cline, D.B. and Sanders, D.A. (1996) A μ+ μ-crystal collider concept, Nucl. Instr. and Meth., B119, 199–205.

    ADS  Google Scholar 

  9. Huang, Z., Chen, P., and Ruth, R.D. (1995) Radiation reaction in continius focusing channel, Phys.Rev.Lett., 74, 1759–1762; (1996) A semiclassical trearment of channeling radiation reaction, Nucl.Instr. and Meth., B119, 192-198.

    Article  ADS  Google Scholar 

  10. Carniero, J.P. et.al. (1999) First results of the Fermilab high-brightness RF photoinjector, in Proc. of 1999 Particle Accelerator Conference, New York, v.3, p.2027–2029.

    Article  ADS  Google Scholar 

  11. Carrigan, Jr. R.A. et al. (1999) Channeling radiation as a probe for new physics in the solid state plasma accelerator regime using the Fermilab AO photoinjector, FERMILAB-Pub-99/302, 1–6.

    Google Scholar 

  12. Carrigan, Jr. R.A., Freudenberger, J., Fritzler, S., Genz, H., Richter, A., Ushakov, A., Zilges, A. and Sellschop, J.P.F. (2001) Probing toward the solid state plasma accelerator frontier using channeling radiation measurements at the Fermilab AO photoingector, FERMILAB-Conf-01/029-E, 1–9.

    Google Scholar 

  13. Gevorgian, L.A., Ispirian, K.A. and Ispirian, R.K. (1997) Channeling in single-wall nanotubes: Possible applications, Pisma Zh. Eksp.Teor. Fiz., 66, 304–307; (1998) High energy particle channeling in singl-wall nanotubes, Nucl.Instr. and Meth., B145, 155-159.

    Google Scholar 

  14. Gevorgian, L.A. and Korkhmazian, N.K. (1979) Undulator radiation in dispersive media, Zh. Eksp.Teor. Fiz., 76, 1226–1235, (1977) Hard undulator radiation in dispersive medium, Preprint YERPHI-273(66)-77, 3-9.

    ADS  Google Scholar 

  15. Bazilev, V.A. and Zhevago, N.K., (1979) Influence of the polarisation of the medium on the radiation of channeled particles, Phys. Lett., B84, 182–184.

    ADS  Google Scholar 

  16. Avakian, R.O., Gevorgian, LA., Ispirian, K.A. and Ispirian, R.K. (1998) Radiation from particles in crystal undulators with allowance for a polarization of the medium, Pisma Zh. Eksp.Teor. Fiz., 68, 437–441; (2001) Spontaneous and stimulated radiation of particles in crystalline and nanotube undulators, Nucl.Instr. and Meth., B113, 112-120.

    Google Scholar 

  17. Gevorgian, L.A. and Pogosian, P.M., (1987) The influence of medium on the gain of FEL, Preprint YERPHI-1011(61)-87, 3–13; (1993) Electron acceleration by laser beam in a spiral undulator in presence of medium, Int. J.Mod. Phys., A213, 1177-1180; (1994) Gain enhancement in a gas-loaded free electron laser, Nucl. Instr. and Meth., A351, 565-567.

    Google Scholar 

  18. Thess, A. et al., (1996) Crystalline ropes of metallic carbon nanotubes, Science, 273, 483–487.

    Article  ADS  Google Scholar 

  19. Fischer, J.E. et al, (1997) Metallic sensitivity in crystalline ropes of single wall carbon nanotubes, Phys. Rev., B55, R4921–R4924.

    ADS  Google Scholar 

  20. Su, Z. and Coppens, P., (1997) Acta Cryst. A53, 749–759.

    Google Scholar 

  21. Klimov,V.V. and Letokhov, V.S., (1996)Hard x-ray radiation emitted by a charged particle moving in a carbon nanotube, Phys. Lett., A222, 424–428; (1997) Hard directional x-radiation emitted by a positron moving in a carbon nanotube, Physica Scripta, 56, 480-486.

    ADS  Google Scholar 

  22. Zhevago, N.K. and Glebov, V.I. (2000) Diffraction and channeling in nanotubes, Zh. Eksp. Teor. Fiz., 118, 579–591; (2001) Theory of propagation of charged particles and soft x-rays in fullerites, Phys. Lett. A282, 97-105.

    Google Scholar 

  23. Esarey, E., and Leemans, W.P.(1999) Scaling laws for laser wakefield accelerators, Proc. 1999 Part.Acc. Conf., New York, v.4, p.p. 3699–3701.

    Google Scholar 

  24. Keldysh, L.V., (1964) Ionization in the field of strong electromagnetic wave, Zh. Eksp. Teor. Fiz., 47, 1945–1957.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gevorgian, L.A., Ispirian, K.A., Shamamian, A.H. (2002). Particle Acceleration in Crystalline and Nanotube Undulators Taking into Account the Medium Polarization. In: Wiedemann, H. (eds) Electron-Photon Interaction in Dense Media. NATO Science Series, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0367-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0367-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0267-0

  • Online ISBN: 978-94-010-0367-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics