Advertisement

Parametric X-Ray Radiation (PXR) Produced in Carbon Single Wall Nanotubes (SWNT) and Fullerites

  • M. A. Aginian
  • R. O. Avakian
  • K. A. Ispirian
  • H. M. Manoukyan
Part of the NATO Science Series book series (NAII, volume 49)

Abstract

The angular and spectral distributions as well as the energy dependence of the PXR produced by relativistic particles passing through crystalline ropes of (10,10) SWNT and fullerite single crystals are investigated. Numerical results obtained for electrons with various energies passing through oriented SWNT and fullerite under Bragg angles to superlattice and crystallographic planes, respectively, are given. Possible experiments as well as some application of such PXR beams are discussed.

Keywords

Transition Radiation Bragg Angle High Energy Particle Single Wall Nanotubes Mosaic Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dresselhaus, M.S., Dresselhaus, G., and Ecklund, P.C. (1996) Science of fullerenes and carbon nanotubes, Academic Press, San Diego.Google Scholar
  2. 2.
    Ispirian, K.A. and Ispirian, R.K. (2001) Can carbon nanotubes handle high energy particles?, CERN Courier, 41, N1, 26–27.Google Scholar
  3. 3.
    Klimov, V.V. and Lethokhov, V.S. (1996) Hard x-ray radiation emitted by a charged particle moving in a carbon nanotube, Phys.Lett., A222, 424–428; (1997) Hard directional X-radiation emitted by a positron moving in a carbon nanotube, Physica Scripta, 56, 480-486.ADSGoogle Scholar
  4. 4.
    Gevorgian, L.A., Ispirian, K.A. and Ispirian, R.K. (1997) Channeling in single wall nanotubes: possible applications, Pisma Zh. Eksp.Teor. Fiz., 66, 322–325; (1998) High energy particle channeling in nanotubes, Nucl. Instr. and Meth., B145, 155-159.Google Scholar
  5. 5.
    Zhevago, N.K.and Glebov, V.I. (1998) Channeling and diffraction in nanotubes, Phys. Lett., A250, 390–393: (2000) Diffraction and channeling in nanotubes, Zh. Eksp. Teor. Fiz., 118, 579-591; (2001) Theory of propagation of charged particles and soft X-rays in fullerites, Phys. Lett. A282, 97-105.ADSGoogle Scholar
  6. 6.
    Avakian, R.O., Gevorgian, L.A., Ispirian, K.A. and Ispirian, R.K. Spontaneous and stimulated radiation of particles in crystalline and nanotube undulators, Nucl. Instr. and Meth., B173, 112–120.Google Scholar
  7. 7.
    Ter-Mikaelian, M.L. (1972) High Energy Electromagnetic Processes in Condensed Media, Wiley, New York, 1972.Google Scholar
  8. 8.
    Rullhusen, P. Artru, A. and Dhez, P. (1998) Novel Radiation Sources Using Relativistic Electrons, World Scientific, Singapore.CrossRefGoogle Scholar
  9. 9.
    Afanasev, A.M. and Aginian M.A. (1978) The radiation of ultrarelativistiv particles pasing through the ideal and mosaic crystals, Zh. Eksp. Teor. Fiz., 74, 570–579.Google Scholar
  10. 10.
    Vardanyan, D.M., Manoukyan, H.M., Petrosyan, H.M. (1985) Theory of X-ray diffraction on the one-dimensional ideal superlattice, Acta Cryst., A41, 212–222.Google Scholar
  11. 11.
    Kaplin, V.V. et al (2000) Observation of bright monochromatic X-rays generated by relativistic electrons passing through a multilayer mirror, Appl. Phys. Lett. 76, 3647–3649.ADSCrossRefGoogle Scholar
  12. 12.
    Zhevago, N.K. (1983) Soft X-ray transition radiation produced by a charge passing through a multilayer structure with period of the order of the wavelength under certain angle, Proc. of the II Symposium on transition radiation of high energy particles, Yerevan, 1983. p.200–207.Google Scholar
  13. 13.
    Kaplan, A.E., Law, C.T. and Shkolnikov, P.L. (1995) X-Ray narrow-line transition radiation source based on low-energy electron beans traversing a multilayer nanostructure, Phys. Rev., E52, 6795–6808.ADSGoogle Scholar
  14. 14.
    Yamada, K., Hosokawa, T. and Takenaka, H. (1999) Observation of soft X-rays of single-mode resonant transition radiation from a multilayer target with a sub micrometer period, Phys. Rev., A59, 3673–3679.ADSGoogle Scholar
  15. 15.
    Lastdrager, B., Tip, A. and Verhoeven, J. (2000) Theory of Cherenkov and transition radiation from layered structures, Phys. Rev., E61, 5767–5778.ADSGoogle Scholar
  16. 16.
    Feranchuk, I.D. and Ivashin, A.D. (1985) Theoretical investigation of the parametric X-ray features, J. Physigue 46, 1981–1986.CrossRefGoogle Scholar
  17. 17.
    Su, Z. and Coppens, P. (1997) Acta Cryst., A53, 749–761.Google Scholar
  18. 18.
    Henke B.L., Gullikson, E.M. and Davis, J.C. (1993) X-Ray interactions: Photoabsorption, scattering, transmission and reflection at E = 50-30000 eV, Z = 1 — 92, At. Data Nucl. Data Tables, 54, 181–342ADSCrossRefGoogle Scholar
  19. 19.
    Nitta, H. (1996) Theoretical notes on parametric radiation, Nucl. Instr. and Meth., B115, 401–404.ADSGoogle Scholar
  20. 20.
    Shchagin, A.V. and Khizhniak, N.A. (1996) Differential properties of parametric x-ray radiation from thin crystal, Nucl. Instr. and Meth., B119, 115–122.ADSGoogle Scholar
  21. 21.
    Brenzinger, K.H. et al, (1997) Investigation of the production mecanizm of parametric X-ray radiation, Z. Phys, A358, 107–114.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • M. A. Aginian
    • 1
  • R. O. Avakian
    • 1
  • K. A. Ispirian
    • 1
  • H. M. Manoukyan
    • 2
  1. 1.Yerevan Physics InstituteYerevanArmenia
  2. 2.Department of PhysicsYerevan State UniversityYerevanArmenia

Personalised recommendations