Advertisement

Asymptotic Giant Branch Stars as Tracers of Star Formation Histories: The GAIA Context

  • Arūnas Kučinskas
  • Vladas Vansevičius
  • Toshihiko Tanabé
Conference paper

Abstract

We discuss a possible use of the asymptotic giant branch (AGB) stars for tracing star formation histories on the Galactic and extragalactic distance scales with the ESA’s astrometric space mission GAIA. Extensive numerical simulations demonstrate that metallicities (Δ[M/H] ≲ 0.3) can be obtained for the AGB stars with GAIA up to the distances of ~ 200 kpc, if no interstellar extinction is present. Reliable population ages can be also obtained from the AGB stars if their T eff are constrained precisely. We show that precise effective temperatures can be obtained by fitting observed spectral energy distributions of the AGB stars with theoretical fluxes calculated from the synthetic spectra. A combination of the derived effective temperatures with the bolometric luminosities allows to derive precise population ages for a wide range of ages and metallicities over the large distance scales. This demonstrates that AGB stars can be employed very effectively for tracing star formation histories with GAIA, allowing to refine the global evolutionary scenarios of stellar populations in the Milky Way and the galaxies beyond.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, M. and Mould, J.: 1982, ApJS 48, 161.ADSCrossRefGoogle Scholar
  2. Bessell, M.S., Castelli, F. and Plez, B.: 1998, A&A 333, 231.ADSGoogle Scholar
  3. Bessell, M.S., Wood, P.R. and Evans, T.L.: 1983, MNRAS 202, 59.ADSGoogle Scholar
  4. Chiosi, C., Nasi, E., Bertelli, G. and Bressan, A.: 1986, A&A 165, 84.ADSGoogle Scholar
  5. Dyck, H.M., Benson, J.A., van Belle, G.T. and Ridgway, S.T.: 1996, AJ 111, 1705.ADSCrossRefGoogle Scholar
  6. Dyck, H.M., van Belle, G.T. and Thompson, R.R.: 1998, AJ 116, 981.ADSCrossRefGoogle Scholar
  7. ESA: 2000, GAIA: ‘Composition, Formation and Evolution of the Galaxy’, Technical Report, ESA-SCI(2000)4.Google Scholar
  8. Feast, M.W.: 1996, MNRAS 278, 11.ADSGoogle Scholar
  9. Ferraro, F.R., Montegriffo, P., Origlia, L. and Fusi Pecci, F.: 2000, AJ 119, 1282.ADSCrossRefGoogle Scholar
  10. Flower, P.J.: 1984, ApJ 278, 582.ADSCrossRefGoogle Scholar
  11. Frogel, J.A., Mould, J. and Blanco, V.M.: 1990, ApJ 352, 96.ADSCrossRefGoogle Scholar
  12. Girardi, L., Bressan, A., Bertelli, G. and Chiosi, C: 2000, A&AS 141, 371.ADSCrossRefGoogle Scholar
  13. Houdashelt, M.L., Bell, R.A., Sweigart, A.V. and Wing, R.F.: 2000, AJ 119, 1424.ADSCrossRefGoogle Scholar
  14. Kučinskas, A., Vansevičius, V., Sauvage, M. and Tanabé, T.: 2000, in: T. Matsumoto and H. Shibai (eds.), ISAS Report SP, No. 14, Mid-and Far-Infrared Astronomy and Future Space Missions, p. 51.Google Scholar
  15. Kučinskas, A., Bridžius, A. and Vansevičius, V: 2002a, Ap&SS, this volume.Google Scholar
  16. Kučinskas, A., Vansevičius, V. and Tanabé, T.: 2002b, A&A, in preparation.Google Scholar
  17. Montegriffo, P., Ferraro, F.R., Origlia, L. and Fusi Pecci, F.: 1998, MNRAS 297, 872.ADSCrossRefGoogle Scholar
  18. Olszewski, E.W., Suntzeff, N.B. and Mateo, M.: 1996, ARA&A 34, 510.ADSCrossRefGoogle Scholar
  19. Perrin, G., Coude du Foresto, V., Ridgway, S.T. et al.: 1998, A&A 331, 619.ADSGoogle Scholar
  20. Vansevičius, V., Bridžius, A. and Drazdys, R.: 2002, Ap&SS, this volume.Google Scholar
  21. Wallerstein, G. and Knapp, G.R.: 1998, ARA&A 36, 369.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Arūnas Kučinskas
    • 1
    • 2
  • Vladas Vansevičius
    • 3
  • Toshihiko Tanabé
    • 4
  1. 1.Institute of Theoretical Physics and AstronomyVilniusLithuania
  2. 2.Vilnius University ObservatoryVilniusLithuania
  3. 3.Institute of PhysicsVilniusLithuania
  4. 4.Institute of Astronomy, School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations