Skip to main content

Coping with a Halogenated One-Carbon Diet: Aerobic Dichloromethane-Mineralising Bacteria

  • Chapter
Biotechnology for the Environment: Strategy and Fundamentals

Part of the book series: Focus on Biotechnology ((FOBI,volume 3A))

Abstract

The degradation by bacteria of man-made, often toxic halogenated chemicals present as contaminants in the environment is a subject that continues to fascinate scientists and the general public alike. This interest has stimulated research on the organisms capable of mineralising halogenated pollutants, and on the enzymes and genes involved in this metabolism. In the case of dichloromethane-mineralising aerobic bacteria, which are the subject of this review, dehalogenative metabolism is stripped down to its bare essentials: a single enzyme, dichloromethane dehalogenase, consisting of a single polypeptide, catalyses the cleavage of two carbon-halogen bonds from a single carbon atom, and allows growth of the bacterial host with dichloromethane as the sole carbon and energy source. The attractive simplicity of this system has made the mineralisation of dichloromethane by aerobic bacteria a well-studied and important paradigm for dehalogenative metabolism. However, recent evidence suggests that genes and proteins other than dichloromethane dehalogenase are also specifically required, and sometimes even essential, for growth of aerobic bacteria with dichloromethane. The characterisation of such accessory genes and proteins is a promising area of enquiry for the postgenomic age of bacterial biodegradation research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akashi, H., and Eyre-Walker, A. (1998) Translational selection and molecular evolution, Curr. Op. Genet. Dev. 8, 688–693.

    PubMed  CAS  Google Scholar 

  2. Alliance, H.S.I. (1998) White paper on methylene chloride, [online] http://www.hsia.org/white_papers/methchlor.htm (June 1998, last accessed 11-07-01).

    Google Scholar 

  3. Anonymous (1993) Facts and figures for the chemical industry, Chem. Eng. News 71, 38–83.

    Google Scholar 

  4. Anthony, C. (1982) The biochemistry of methylotrophs, Academic Press, London.

    Google Scholar 

  5. Armstrong, R.N. (1997) Structure, catalytic mechanism, and evolution of the glutathione transferases, Chem. Res. Toxicol. 10, 2–18.

    PubMed  CAS  Google Scholar 

  6. Åslund, F., and Beckwith, J. (1999) Bridge over trouble waters: sensing stress by disulfide bond formation, Cell 96, 751–753.

    PubMed  Google Scholar 

  7. Bader, R., and Leisinger, T. (1994) Isolation and characterization of the Methylophilus sp. strain DM11 gene encoding dichloromethane dehalogenase/glutathione S-transferase, J. Bacteriol. 176, 3466–3473.

    PubMed  CAS  Google Scholar 

  8. Blocki, F.A., Logan, M.S.P, Baoli, C, and Wackett, L.P. (1994) Reaction of rat liver glutathione Stransferases and bacterial dichloromethane dehalogenase with dihalomethanes, J. Biol. Chem. 269, 8826–8830.

    PubMed  CAS  Google Scholar 

  9. Booth, I.R. (1985) Regulation of cytoplasmic pH in bacteria, Microbiol. Rev. 49, 359–378.

    PubMed  CAS  Google Scholar 

  10. Braus-Stromeyer, S.A., Hermann, R., Cook, A.M., and Leisinger, T. (1993) Dichloromethane as the sole carbon source for an acetogenic mixed culture and isolation of a fermentative, dichloromethanedegrading bacterium, Appl. Environ. Microbiol. 59, 3790–3797.

    PubMed  CAS  Google Scholar 

  11. Braus-Stromeyer., S. (1993) Anaerobic degradation of chlorinated methanes. Ph. D. thesis No. 10324, ETH Zurich, Switzerland,.

    Google Scholar 

  12. Brunner, W., Staub, D., and Leisinger, T. (1980) Bacterial degradation of dichloromethane, Appl. Environ. Microbiol. 40, 950–958.

    PubMed  CAS  Google Scholar 

  13. Byers, H.K., and Sly, L.I. (1993) Toxic effects of dichloromethane on the growth of methanotrophic bacteria, FEMS Microbiol. Ecol. 12, 35–38.

    CAS  Google Scholar 

  14. Cai, B., Vuilleumier, S., and Wackett, L.P. (1998) Purification and characterization of the mutant enzyme W1 17Y of the dichloromethane dehalogenase from Methylophilus sp. strain DM11, Ann. NY Acad. Sci. 864, 210–213.

    PubMed  CAS  Google Scholar 

  15. Casalone, E., Allocati, N., Ceccarelli, I., Masulli, M., Rossjohn, J., Parker, M.W., and Di Ilio, C. (1998) Site-directed mutagenesis of the Proteus mirabilis glutathione transferase B1-1 G-site, FEBS Lett. 423, 122–124.

    PubMed  Google Scholar 

  16. Casanova, M., Bell, D.A., and Heck, H.d.A. (1997) Dichloromethane metabolism to formaldehyde and reaction of formaldehyde with nucleic acids in hepatocytes of rodents and humans with and without glutathione S-transferase T1 and M1 genes, Fund. Appl. Toxicol. 37, 168–180.

    CAS  Google Scholar 

  17. Chistoserdova, L., Vorholt, J.A., Thauer, R.K., and Lidstrom, M.E. (1998) C-1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea, Science 281, 99–102.

    PubMed  CAS  Google Scholar 

  18. De Best, J.H., Ultee, J, Hage, A., Doddema, H.J., Janssen, D.B., and Harder, W. (2000) Dichloromethane utilization in a packed-bed reactor in the presence of various electron acceptors, Water Res. 34, 566–574.

    Google Scholar 

  19. De Lorenzo, V., and Timmis, K.N. (1994) Analysis and construction of stable phenotypes in Gramnegative bacteria with Tn5-and Tn10-derived minitransposons, Methods Enzymol. 235, 386–405.

    PubMed  CAS  Google Scholar 

  20. Dechert, S. (1995) Untersuchungen zum Wirkmechanismus der Mutagenität und Tumorigenität von Dichlormethan und seinen Metaboliten, Ph. D. Thesis, Universität Würzburg, Germany.

    Google Scholar 

  21. DeMarini, D.M., Shelton, M.L., Warren, S.H., Ross, T.M., Shim, J.-Y., Richard, A.M., and Pegram, R.A. (1997) Glutathione S-transferase-mediated induction of GC — AT transitions by halomethanes in Salmonella, Environ. Mol. Mutagen. 30, 440–447.

    PubMed  CAS  Google Scholar 

  22. Demartis, S, Huber, A., Viti, F., Lozzi, L., Giovannoni, L., Neri, P., Winter, G., and Neri, D. (1999) A strategy for the isolation of catalytic activities from repertoires of enzymes displayed on phage, J. Mol. Biol. 286, 617–633.

    PubMed  CAS  Google Scholar 

  23. Dhillon, S., and Von Burg, R. (1995) Methylene chloride, J. Appl. Toxicol. 15, 329–335.

    PubMed  CAS  Google Scholar 

  24. Dijkhuizen, L., Levering, P.R., and de Vries, G.E. (1992) The physiology and biochemistry of aerobic methanol-utilizing Gram-negative and gram-positive bacteria, in J.C. Murrell and H. Dalton (ed.), Methane and methanol utilizers, vol. 5, Plenum Press, New York, pp. 149–181.

    Google Scholar 

  25. Diks, R.M., and Ottengraf, S.P. (1991) Verification studies of a simplified model for the removal of dichloromethane from waste gases using a biological trickling filter (part II), Bioprocess. Eng. 6, 131–140.

    CAS  Google Scholar 

  26. Doronina, N.V., and Trotsenko, Y.A. (1994) Methylophilus leisingerii sp. nov., a new species of restricted facultatively methylotrophic bacteria, Microbiology (Russian) 63, 298–302.

    Google Scholar 

  27. Doronina, N.V., Braus-Stromeyer, S.A., Leisinger, T., and Trotsenko, Y.A. (1995) Isolation and characterization of a new facultatively methylotrophic bacterium: description of Methylorhabdus multivorans, gen. nov., sp. nov., Syst. Appl. Microbiol. 18, 92–98.

    CAS  Google Scholar 

  28. Doronina, N.V., Trotsenko, Y.A., Krausova, V.I., and Suzina, N.E. (1998) Paracoccus methylutens sp. nov. — a new aerobic facultatively methylotrophic bacterium utilizing dichloromethane, Syst. Appl. Microbiol. 21, 230–236.

    CAS  Google Scholar 

  29. Doronina, N.V., Trotsenko, Y.A., Tourova, T.P., Kuznetzov, B.B., and Leisinger, T. (2000) Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov. — novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane, Syst. Appl. Microbiol. 23, 210–218.

    PubMed  CAS  Google Scholar 

  30. Doronina, N.V., Trotsenko, Y.A., Tourova, T.P., Kuznetsov, B.B., and Leisinger, T. (2001) Albobacter methylovorans gen. nov. sp. nov., a novel aerobic, facultatively autotrophic and methylotrophic bacterium that utilizes dichloromethane, Int. J. Syst. Evol. Microbiol. 51, 1051–1058.

    PubMed  CAS  Google Scholar 

  31. Evans, G., Ferguson, G.P., Booth, I.R., and Vuilleumier, S. (2000) Growth inhibition of Escherichia coli by dichloromethane in cells expressing dichloromethane dehalogenase/glutathione S-transferase, Microbiology 146, 2967–2975.

    PubMed  CAS  Google Scholar 

  32. Fahey, R.C., and Sundquist, A.R. (1991) Evolution of glutathione metabolism, Adv. Enzymol. Rel. Areas Mol. Biol. 64, 1–53.

    CAS  Google Scholar 

  33. Felsenstein, J. (1993) PHYLIP (Phylogeny inference package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  34. Ferguson, G.P. (1999) Protective mechanisms against toxic electrophiles in Escherichia coli, Trends Microbiol. 7, 242–247.

    PubMed  CAS  Google Scholar 

  35. Fersht, A.R. (1999) Structure and mechanism in protein science, W. H. Freeman, New York.

    Google Scholar 

  36. Flanagan, J.U., Rossjohn, J., Parker, M.W., Board, P.G., and Chelvanayagam, G. (1998) A homology model for the human Theta-class glutathione transferase T1-1, Proteins Struct. Funct. Genet. 33,444–454.

    PubMed  CAS  Google Scholar 

  37. Flanagan, J.U., Rossjohn, J., Parker, M.W., Board, P.G., and Chelvanayagam, G. (1999) Mutagenic analysis of conserved arginine residues in and around the novel sulfate binding pocket of the human Theta class glutathione transferase T2-2, Protein Science 8, 2205–2212.

    PubMed  CAS  Google Scholar 

  38. Freedman, D.L., and Gossett, J.M. (1991) Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions, Appl. Environ. Microbiol. 57, 2847–2857.

    PubMed  CAS  Google Scholar 

  39. Freedman, D.L., Smith, C.R., and Noguera, D.R. (1997) Dichloromethane biodegradation under nitrate reducing conditions, Water Environ. Res. 69, 115–122.

    CAS  Google Scholar 

  40. Friedberg, E.C, Walker, G.C., and Siede, W. (1995) DNA repair and mutagenesis, ASM Press, Washington DC.

    Google Scholar 

  41. Gälli, R., and Leisinger, T. (1985) Specialized bacterial strains for the removal of dichloromethane from industrial waste, Conservation and Recycling 8, 91–100.

    Google Scholar 

  42. Gälli, R. (1987) Biodegradation of dichloromethane in wastewater using a fluidized bed bioreactor, Appl. Microbiol. Biotechnol. 27, 206–213.

    Google Scholar 

  43. Gälli, R., and Leisinger, T. (1988) Plasmid analysis and cloning of the dichloromethane-utilization genes of Methylobacterium sp. DM4, J. Gen. Microbiol. 134, 943–952.

    PubMed  Google Scholar 

  44. Gillespie, J.H. (1991) The causes of molecular evolution, Oxford University Press, Oxford.

    Google Scholar 

  45. Gisi, D., Willi, L., Traber, H., Leisinger, T., and Vuilleumier, S. (1998) Effects of bacterial host and dichloromethane dehalogenase on the competitiveness of methylotrophic bacteria growing with dichloromethane, Appl. Environ. Microbiol. 64, 1194–1202.

    PubMed  CAS  Google Scholar 

  46. Gisi, D., Leisinger, T., and Vuilleumier, S. (1999) Enzyme-mediated dichloromethane toxicity and mutagenicity of bacterial and mammalian dichloromethane-active glutathione S-transferases, Arch. Toxicol. 73, 71–79.

    PubMed  CAS  Google Scholar 

  47. Gisi, D., Maillard, J., Flanagan, J.U., Rossjohn, J., Chelvanayagam, G., Board, P.G., Parker, M.W., Leisinger, T., and Vuilleumier, S. (2001) Dichloromethane mediated in vivo selection and functional characterization of rat glutathione-transferase theta 1-1 variants, Eur. J. Biochem. 268 (14), in press.

    Google Scholar 

  48. Graves, R.J., and Green, T. (1996) Mouse liver glutathione S-transferase mediated metabolism of methylene chloride to a mutagen in the CHO/HPRT assay, Mutat. Res. 367, 143–150.

    PubMed  CAS  Google Scholar 

  49. Green, T. (1983) The metabolic activation of dichloromethane and chlorofluoromethane in a bacterial mutation assay using Salmonella typhimurium, Mutat. Res. 118, 277–288.

    PubMed  CAS  Google Scholar 

  50. Green, T. (1997) Methylene chloride induced mouse liver and lung tumours: an overview of the role of mechanistic studies in human safety assessment, Hum. Exp. Toxicol. 16, 3–13.

    PubMed  CAS  Google Scholar 

  51. Gutman, P.D., P., F., and Minton, K.W. (1994) Restoration of the DNA damage resistance of Deinococcus radiodurans DNA polymerase mutants by Escherichia coli DNA polymerase I and Klenow fragment, Mutat. Res. 314, 87–97.

    PubMed  CAS  Google Scholar 

  52. Halden, K., and Chase, H.A. (1991) Methanotrophs for clean-up of polluted aquifers, Water Sci. Technol. 24(11), 9–17.

    CAS  Google Scholar 

  53. Hanson, D.J. (1996) Toxics release inventory report shows chemical emissions continuing to fall, Chem. Eng. News 74(29), 29–46.

    Google Scholar 

  54. Hansson, L.O., Widersten, M., and Mannervik, B. (1999) An approach to optimizing the active site in a glutathione transferase by evolution in vitro, Biochem. J. 344, 93–100.

    PubMed  CAS  Google Scholar 

  55. Hansson, L.O., Bolton Grob, R., Massoud, T., and Mannervik, B. (1999) Evolution of differential substrate specificities in Mu class glutathione transferases probed by DNA shuffling, J. Mol. Biol. 287, 265–276.

    PubMed  CAS  Google Scholar 

  56. Harrington, C.A., Rosenow, C, and Retief, J. (2000) Monitoring gene expression using DNA microarrays, Curr. Op. Microbiol. 3, 285–291.

    CAS  Google Scholar 

  57. Hartmans, S., and Tramper, J. (1991) Dichloromethane removal from waste gases with a trickle-bed bioreactor, Bioprocess Eng. 6, 83–92.

    CAS  Google Scholar 

  58. Heraty, L.J., Fuller, M.E., Huang, L., Abrajano, T., and Sturchio, N.C. (1999) Isotopic fractionation of carbon and chlorine by microbial degradation of dichloromethane, Org. Geochem. 30, 793–799.

    CAS  Google Scholar 

  59. Inman, M.A., Butler, M.A., Connor, T.H., and Matney, T.S. (1983) The effects of excision repair and the plasmid pKM101 on the induction of His+ revertants by chemical agents in Salmonella typhimurium, Teratogen. Carcinogen. Mutagen. 3, 491–501.

    CAS  Google Scholar 

  60. Isidorov, V.A. (1990) Organic chemistry of the earth’s atmosphere, Springer Verlag, Berlin.

    Google Scholar 

  61. Janssen, D.B., van den Wijngaard, A.J., van der Waarde, J.J., and Oldenhuis, R. (1991) Biochemistry and kinetics of aerobic degradation of chlorinated aliphatic hydrocarbons, in R.E. Hinchee and R.F. Olfenbuttel (ed.), On-site bioreclamation, Butterworth-Heinemann, Boston, pp. 92–112.

    Google Scholar 

  62. Jemth, P., and Mannervik, B. (1997) Kinetic characterization of recombinant human glutathione transferase T1-1, a polymorphic detoxication enzyme, Arch. Biochem. Biophys. 348, 247–254.

    PubMed  CAS  Google Scholar 

  63. Kästner, M. (1989) Biodegradation of volatile hydrocarbons., Dechema Biotechnology Conferences, vol. 3B, VCH Verlagsgesellschaft, Frankfurt am Main, pp. 909–912.

    Google Scholar 

  64. Kayser, M.F., Stumpp, M.T., and Vuilleumier, S. (2000) DNA polymerase I is essential for growth of Methylobacterium dichloromethanicum DM4 with dichloromethane, J. Bacteriol. 182, 5433–5439.

    PubMed  CAS  Google Scholar 

  65. Kayser, M.F., and Vuilleumier, S. (2001) Dehalogenation of dichloromethane by dichloromethane dehalogenase/glutathione S-transferase leads to the formation of DNA adducts, J. Bacteriol. 183(17), in press.

    Google Scholar 

  66. Keene, W.C., Khalil, M.A.K., Erickson, D.J., McCulloch, A., Graedel, T.E., Lobert, J.M., Aucott, M.L., Gong, S.L., Harper, D.B., Kleiman, G., Midgley, P., Moore, R.M., Seuzaret, C, Sturges, W.T., Benkovitz, CM., Koropalov, V., Barrie, L.A., and Li, Y.F. (1999) Composite global emissions of reactive chlorine from anthropogenic and natural sources: Reactive Chlorine Emissions Inventory, J. Geophys. Res. 104, 8429–8440.

    CAS  Google Scholar 

  67. Keith, L.H., and Telliard, W.A. (1979) Priority pollutants I — a perspective view, Env. Sci. Technol. 13, 416–423.

    Google Scholar 

  68. Klecka, G.M. (1982) Fates and effects of methylene chloride in activated sludge, Appl. Environ. Microbiol. 44, 701–707.

    PubMed  CAS  Google Scholar 

  69. Ko, Y., Koch, B., Harth, V., Sachinidis, A., Thier, R., Vetter, H., Bolt, H.M., and Bruning, T. (2000) Rapid analysis of GSTM1, GSTT1 and GSTP1 polymorphisms using real-time polymerase chain reaction, Pharmacogenetics 10, 271–274.

    PubMed  CAS  Google Scholar 

  70. Kohler-Staub, D., and Leisinger, T. (1985) Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2, J. Bacteriol. 162, 676–681.

    PubMed  CAS  Google Scholar 

  71. Kohler-Staub, D., Hartmans, S., Gälli, R., Suter, F., and Leisinger, T. (1986) Evidence for identical dichloromethane dehalogenases in different methylotrophic bacteria, J. Gen. Microbiol. 132, 2837–2844.

    CAS  Google Scholar 

  72. Kohler-Staub, D., Frank, S., and Leisinger, T. (1995) Dichloromethane as the sole carbon source for Hyphomicrobium sp. strain DM2 under denitrification conditions, Biodegradation 6, 229–235.

    CAS  Google Scholar 

  73. Kraulis, J.P. (1991) MOLSCRIPT: A program to produce both detailed & schematic plots of protein structures, J. Appl. Crystallogr. 24, 946–950.

    Google Scholar 

  74. La Roche, S.D., and Leisinger, T. (1990) Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S-transferase supergene family, J. Bacteriol. 172, 164–171.

    PubMed  Google Scholar 

  75. La Roche, S.D., and Leisinger, T. (1991) Identification of dcmR, the regulatory gene governing expression of dichloromethane dehalogenase in Methylobacterium sp. DM4, J. Bacteriol. 173, 6714–6721.

    PubMed  Google Scholar 

  76. Landi, S. (2000) Mammalian class theta GST and differential susceptibility to carcinogens: a review, Mutat. Res. 463, 247–283.

    PubMed  CAS  Google Scholar 

  77. LaPat-Polaska, L.T., McCarty, P.L., and Zehnder, A.J.B. (1984) Secondary substrate utilization of methylene chloride by an isolated strain of Pseudomonas sp., Appl. Environ. Microbiol. 47, 825–830.

    Google Scholar 

  78. Leisinger, T., Bader, R., Hermann, R., Schmid-Appert, M., and Vuilleumier, S. (1994) Microbes, enzymes and genes involved in dichloromethane utilization, Biodegradation 5, 237–248.

    PubMed  CAS  Google Scholar 

  79. Lewontin, R.C. (1989) Inferring the number of evolutionary events from DNA coding sequence differences, Mol. Biol. Evol. 6, 15–32.

    PubMed  CAS  Google Scholar 

  80. Liteplo, R.G., Long, G.W., and Meek, M.E. (1998) Relevance of carcinogenicity bioassays in mice in assessing potential health risks associated with exposure to methylene chloride, Hum. Exp. Toxicol. 17, 84–87.

    PubMed  CAS  Google Scholar 

  81. Maduke, M., Pheasant, D.J., and Miller, C. (1999) High-level expression, functional reconstitution, and quaternary structure of a prokaryotic CIC-type chloride channel, J. Gen. Physiol. 114, 713–722.

    PubMed  CAS  Google Scholar 

  82. Mägli, A., Rainey, F.A., and Leisinger, T. (1995) Acetogenesis from dichloromethane by a twocomponent mixed culture comprising a novel bacterium, Appl. Environ. Microbiol. 61, 2943–2949.

    PubMed  Google Scholar 

  83. Mägli, A., Wendt, M., and Leisinger, T. (1996) Isolation and characterization of Dehalobacterium formicoaceticum gen. nov. sp. nov., a strictly anaerobic bacterium utilizing dichloromethane as source of carbon and energy, Arch. Microbiol. 166, 101–108.

    Google Scholar 

  84. Mägli, A., Messmer, M., and Leisinger, T. (1998) Metabolism of dichloromethane by the strict anaerobe Dehalobacterium formicoaceticum, Appl. Environ. Microbiol. 64, 646–650.

    PubMed  Google Scholar 

  85. Mckay, D., Shiu, W.Y., and Ma, K.C. (1993) Volatile organic chemicals, vol. 3, Lewis Publishers, Boca Raton.

    Google Scholar 

  86. McLaggan, D., Naprstek, J., Buurman, E.T., and Epstein, W. (1994) Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli, J. Biol. Chem. 269, 1911–1917.

    PubMed  CAS  Google Scholar 

  87. Messmer, M., Reinhardt, S., Wohlfarth, G., and Diekert, G. (1996) Studies on methyl chloride dehalogenase and O-demethylase in cell extracts of the homoacetogen strain MC based on a newly de veloped coupled enzyme assay, Arch. Microbiol. 165, 18–25.

    CAS  Google Scholar 

  88. Meyer, D.J., Coles, B., Pemble, S.E., Gilmore, K.S., Fraser, G.M., and Ketterer, B. (1991) Theta, a new class of glutathione transferases purified from rat and man, Biochem. J. 274, 409–414.

    PubMed  CAS  Google Scholar 

  89. Mills, J., Wyborn, N.R., Greenwood, J.A., Williams, S.G., and Jones, C.W. (1997) An outer-membrane porin inducible by short-chain amides and urea in the methylotrophic bacterium Methylophilus methylotrophus, Microbiology 143, 2373–2379.

    PubMed  CAS  Google Scholar 

  90. Mills, J., Wyborn, N.R., Greenwood, J.A., Williams, S.G., and Jones, C.W. (1998) Characterisation of a binding-protein-dependent, active transport system for short-chain amides and urea in the methylotrophic bacterium Methylophilus methylotrophus, Eur. J. Biochem. 251, 45–53.

    PubMed  CAS  Google Scholar 

  91. Nicolaidis, A.A., and Sargent, A.W. (1987) Isolation of methane monooxygenase-deficient mutants from Methylosinus trichosporium Ob3b using dichloromethane, FEMS Microbiol. Lett. 41, 47–52.

    CAS  Google Scholar 

  92. Oda, Y., Yamazaki, H., Thier, R., Ketterer, B., Guengerich, F.P., and Shimada, T. (1996) A new Salmonella typhimurium NM5004 strain expressing rat glutathione S-transferase 5-5: use in detection of genotoxicity of dihaloalkanes using an SOS/umu test system, Carcinogenesis 17, 297–302.

    PubMed  CAS  Google Scholar 

  93. O’Donovan, M.R., and Mee, M.D. (1993) Formaldehyde is a bacterial mutagen in a range of Salmonella and Escherichia indicator strains, Mutagenesis 8, 577–581.

    PubMed  Google Scholar 

  94. Oldenhuis, R., Vink, R.L.J.M., Janssen, D.B., and Witholt, B. (1989) Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium Ob3b expressing soluble methane monooxygenase, Appl. Environ. Microbiol. 55, 2819–2826.

    PubMed  CAS  Google Scholar 

  95. Osterman-Golkar, S., Hussain, S., Walles, S., Anderstam, B., and Sigvardsson, K. (1983) Chemical reactivity and mutagenicity of some dihalomethanes, Chem.-Biol. Interactions 46, 121–130.

    CAS  Google Scholar 

  96. Pegram, R.A., Andersen, M.E., Warren, S.H., Ross, T.M., and Claxton, L.D. (1997) Glutathione Stransferase-mediated mutagenicity of trihalomethanes in Salmonella typhimurium: contrasting results with bromodichloromethane and chloroform, Toxicol. Appl. Pharmacol. 144, 183–188.

    PubMed  CAS  Google Scholar 

  97. Penninckx, M.J., and Elskens, M.T. (1993) Metabolism and functions of glutathione in microorganisms, Adv. Microbial Physiol. 34, 239–301.

    CAS  Google Scholar 

  98. Riccillo, P.M., Muglia, C.I., de Bruijn, F.J., Roe, A.J., Booth, I.R., and Aguilar, O.M. (2000) Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance, J. Bacteriol. 182, 1748–1753.

    PubMed  CAS  Google Scholar 

  99. Rittmann, B.E., and McCarty, P.L. (1980) Utilization of dichloromethane by suspended and fixed-film bacteria, Appl. Environ. Microbiol. 39, 1225–1226.

    PubMed  CAS  Google Scholar 

  100. Roberts, A.L., Sanborn, P.N., and Gschwend, P.M. (1992) Nucleophilic substitution reactions of dihalomethanes with hydrogen sulfide species, Environ. Sci. Technol. 26, 2263–2274.

    CAS  Google Scholar 

  101. Roe, A.J., McLaggan, D., Davidson, I., O’Byrne, C, and Booth, I.R. (1998) Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids, J. Bacteriol. 180, 767–772.

    PubMed  CAS  Google Scholar 

  102. Rossjohn, J., Polekhina, G., Feil, S.C., Allocati, N., Masulli, M., Di Ilio, C, and Parker, M.W. (1998) A mixed disulfide bond in bacterial glutathione transferase: functional and evolutionary implications, Structure 6, 721–734.

    PubMed  CAS  Google Scholar 

  103. Rossjohn, J., McKinstry, W.J., Oakley, A.J., Verger, D., Flanagan, J., Chelvanayagam, G., Tan, K.-L., Board, P.G., and Parker, M.W. (1998) Human Theta class glutathione transferase: the crystal structure reveals a sulfate-binding pocket within the buried active site, Structure 6, 309–322.

    PubMed  CAS  Google Scholar 

  104. Sancar, A. (1998) DNA excision repair, Annu. Rev. Biochem. 65, 43–81.

    Google Scholar 

  105. Schmid-Appert, M., Zoller, K., Traber, H., Vuilleumier, S., and Leisinger, T. (1997) Association of newly discovered IS elements with the dichloromethane utilization genes of methylotrophic bacteria, Microbiology 143, 2557–2567.

    PubMed  CAS  Google Scholar 

  106. Scholtz, R., Wackett, L.P., Egli, C, Cook, A.M., and Leisinger, T. (1988) Dichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloromethane-utilizing bacterium, J. Bacteriol. 170, 5698–5704.

    PubMed  CAS  Google Scholar 

  107. Sherratt, P.J., Manson, M.M., Thomson, A.M., Hissink, E.A.M., Neal, G.E., van Bladeren, P.J., Green, T., and Hayes, J.D. (1998) Increased bioactivation of dihaloalkanes in rat liver due to induction of class Theta glutathione S-transferase T1-1, Biochem. J. 365, 619–630.

    Google Scholar 

  108. Sies, H. (1999) Glutathione and its role in cellular functions, Free Rad. Biol. Medicine 27, 916–921.

    CAS  Google Scholar 

  109. Stromeyer, S.A., Winkelbauer, W., Kohler, H., Cook, A.M., and Leisinger, T. (1991) Dichloromethane utilized by an anaerobic mixed culture: acetogenesis and methanogenesis, Biodegradation 2, 129–137.

    PubMed  CAS  Google Scholar 

  110. Stucki, G., Galli, R., Ebersold, H.R., and Leisinger, T. (1981) Dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2, Arch. Microbiol. 130, 366–371.

    CAS  Google Scholar 

  111. Stucki, G. (1990) Biological decomposition of dichloromethane from a chemical process effluent, Biodegradation 1, 221–228.

    PubMed  CAS  Google Scholar 

  112. Studer, A., Stupperich, E., Vuilleumier, S., and Leisinger, T. (2001) Chloromethanetetrahydrofolate methyl transfer by two proteins from Methylobacterium chloromethanicum strain CM4, Eur. J. Biochem. 268, 2931–2938.

    PubMed  CAS  Google Scholar 

  113. Thier, R., Taylor, J.B., Pemble, S.E., Humphreys, W.G., Persmark, M., Ketterer, B., and Guengerich, F.P. (1993) Expression of mammalian glutathione S-transferase 5-5 in Salmonella typhimurium TA1535 leads to base-pair mutations upon exposure to dehalomethanes, Proc. Natl. Acad. Sci. USA 90, 8576–8580.

    PubMed  CAS  Google Scholar 

  114. Thier, R., Wiebel, F.A., Hinkel, A., Burger, A., Bruning, T., Morgenroth, K., Senge, T., Wilhelm, M., and Schulz, T.G. (1998) Species differences in the glutathione transferase GSTT1-1 activity towards the model substrates methyl chloride and dichloromethane in liver and kidney, Arch. Toxicol. 72, 622–629.

    PubMed  CAS  Google Scholar 

  115. Thompson, J.D., G., H.D., and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucl. Acids Res. 22, 4673–4680.

    PubMed  CAS  Google Scholar 

  116. Uotila, L., and Koivusalo, M. (1974) Formaldehyde dehydrogenase from human liver, J. Biol. Chem. 249, 7653–7663.

    PubMed  CAS  Google Scholar 

  117. Urhahn, T., and Ballschmiter, K. (1998) Chemistry of the biosynthesis of halogenated methanes: Clorganohalogens as pre-industrial chemical stressors in the environment?, Chemosphere 37, 1017–1032.

    CAS  Google Scholar 

  118. van Agteren, M.H., Keuning, S., and Janssen, D.B. (1998) Handbook on biodegradation and biological treatment of hazardous organic compounds, Kluwer, Dordrecht.

    Google Scholar 

  119. van Hylckama Vlieg, J.E.T., de Koning, W., and Janssen, D.B. (1996) Transformation kinetics of chlorinated ethenes by Methylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatography, Appl. Environ. Microbiol. 62, 3304–3312.

    Google Scholar 

  120. van Spanning, R.J.M., de Vries, S., and Harms, N. (2000) Coping with formaldehyde during CI metabolism of Paracoccus denitrificans, J. Molec. Catal. B 8, 37–50.

    Google Scholar 

  121. Vannelli, T., Messmer, M., Studer, A., Vuilleumier, S., and Leisinger, T. (1999) A corrinoid-dependent catabolic pathway for growth of a Methylobacterium strain with chloromethane, Proc. Natl. Acad. Sci. USA 96, 4615–4620.

    PubMed  CAS  Google Scholar 

  122. Viña, J.E. (1990) Glutathione: metabolism and physiological functions, CRC Press, Boca Raton.

    Google Scholar 

  123. Vuilleumier, S., and Leisinger, T. (1996) Protein engineering studies of dichloromethane dehalogenase/glutathione S-transferase from Methylophilus sp. strain DM11. Serl2 but not Tyr6 is required for enzyme activity, Eur. J. Biochem. 239, 410–417.

    PubMed  CAS  Google Scholar 

  124. Vuilleumier, S. (1997) Bacterial glutathione S-transferases: what are they good for?, J. Bacteriol. 179, 1431–1441.

    PubMed  CAS  Google Scholar 

  125. Vuilleumier, S., Sorribas, H., and Leisinger, T. (1997) Identification of a novel determinant of glutathione affinity in dichloromethane dehalogenase/glutathione S-transferases, Biochem. Biophys. Res. Commun. 238, 452–456.

    PubMed  CAS  Google Scholar 

  126. Vuilleumier, S. (2001) Bacterial dichloromethane dehalogenases and the detoxification of xenobiotics: dehalogenation through glutathione conjugation and beyond, in J.C. Hall, R.E. Hoagland, and R.E. Zablotowicz (ed.), Biotransformations in plants and microorganisms, ACS Symposium Series, vol. 777, Oxford University Press, Oxford, pp. 240–252.

    Google Scholar 

  127. Vuilleumier, S., IvoS, N., Dean, M., and Leisinger, T. (2001) Sequence variation in dichloromethane dehalogenases/glutathione S-transferases, Microbiology 147, 611–616.

    PubMed  CAS  Google Scholar 

  128. Whittington, A.T., Vichai, V., Webb, G.C., Baker, R.T., Pearson, W.R., and Board, P.G. (1999) Gene structure, expression and chromosomal localization of murine Theta class glutathione transferase mGSTT1-1, Biochem. J. 337, 141–151.

    PubMed  CAS  Google Scholar 

  129. Wilce, M.C.J., Board, P.G., Feil, S.C., and Parker, M.W. (1995) Crystal structure of a theta-class glutathione transferase, EMBO J. 14, 2133–2143.

    PubMed  CAS  Google Scholar 

  130. Winkelbauer, W., and Kohler, H. (1991) Biologischer Abbau von Dichlormethan unter anaeroben Bedingungen in einer Aktivkohle-Anlage, Das Gas-und Wasserfach Wasser/Abwasser 132, 425–432.

    CAS  Google Scholar 

  131. Wohlfarth, G., and Diekert, G. (1997) Anaerobic dehalogenases, Curr. Op. Biotechnol. 8, 290–295.

    CAS  Google Scholar 

  132. Wood, J.M. (1999) Osomosensing by bacteria: signals and membrane-bases sensors, Microbiol. Molec. Biol. Rev. 63, 230–262.

    CAS  Google Scholar 

  133. Zijlstra, J.A. (1989) Liquid holding increases mutation induction by formaldehyde and some other crosslinking agents in Escherichia coli K12, Mutat. Res. 210, 255–261.

    PubMed  CAS  Google Scholar 

  134. Zuber, L. (1995) Trickling filter and three-phase airlift bioreactor for the removal of dichloromethane from air. Ph. D. thesis No. 11202, ETH Zurich, Switzerland.

    Google Scholar 

  135. Zuber, L., Dunn, I.J., and Deshusses, M.A. (1997) Comparative scale-up and cost estimation of a biological trickling filter and an airlift reactor for the removal of methylene chloride from polluted air, J. Air Waste Manag. Assoc. 47, 969–975.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vuilleumier, S. (2002). Coping with a Halogenated One-Carbon Diet: Aerobic Dichloromethane-Mineralising Bacteria. In: Agathos, S.N., Reineke, W. (eds) Biotechnology for the Environment: Strategy and Fundamentals. Focus on Biotechnology, vol 3A. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0357-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0357-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3907-9

  • Online ISBN: 978-94-010-0357-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics