Skip to main content

Mechanisms Involving the Aerobic Biodegradation of PCB in the Environment

  • Chapter
Biotechnology for the Environment: Strategy and Fundamentals

Part of the book series: Focus on Biotechnology ((FOBI,volume 3A))

Abstract

Polychlorinated biphenyls (PCBs) are among the most persistent environmental contaminants known. Because they are comprised of 60 to 80 congeners, they present a more formidable challenge to microorganisms than a single compound. Remediation strategies are still in the research and development phase although promise has been demonstrated with a few limited field trials. The current paradigm is that aerobic biodegradation is generally limited to PCB mixtures having an average mass percentage of 42% chlorine (e.g. Aroclor 1242). Although metabolism of higher chlorinated congeners (e.g. hexachlorobiphenyls) has been demonstrated in cultures grown with biphenyl, the process has, so far, not been implemented in soils and sediments contaminated by Aroclors 1254 (54% Cl) or 1260 (60% Cl). These more highly chlorinated congeners, nevertheless, undergo slow reductive dehalogenation in flooded soils and sediments to less chlorinated congeners, which would be susceptible to aerobic biodegradation. Coupled anaerobic and aerobic metabolism in sediments is probably how biodegradation of highly chlorinated congeners occurs in sediments. Recent studies have shown that addition of brominated analogs (Wu et al., 1999) or ferrous sulphate (Zwiernik et al., 1998) enhances dehalogenation of PCBs. However, the organisms involved in anaerobic dehalogenation have not been isolated, and this has complicated the task of understanding and manipulating the process to our advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, R. H., Huang, C. M., Higson, F. K., Brenner, V. and Focht, D. D. (1992). Construction of a 3-chlorobiphenyl-utilizing recombinant from an intergeneric mating. Appl. Environ. Microbiol. 58, 647-654.

    PubMed  CAS  Google Scholar 

  • Ahmad, D., Sylvestre, M. and Masse, R. (1991). Bioconversion of 2-hydroxy-6-oxo-6-(4’-chlorophenyl)hexa-2,4-dienoic acid, the meta-cleavage product of 4-chlorobiophenyl. J. Gen. Microbiol. 137, 1375–1385.

    Article  PubMed  CAS  Google Scholar 

  • Ahmed, M. and Focht, D. D. (1973). Degradation of polychlorinated biphenyls by two species of Achromobacter. Can. J. Microbiol. 19, 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Arensdorf, J. J. and Focht, D. D. (1994). Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls. Appl. Environ. Microbiol. 60, 2884–2889.

    PubMed  CAS  Google Scholar 

  • Asturias, J. A., Moore, E., Yakimov, M., Klatte, S. and Timmis, K. N. (1994). Reclassification of the polychlorinated biphenyl-degraders Acinetobacter sp. strain P6 and Corynebacterium sp. strain MB1 as Rhodococcus globerulus. Syst. Appl. Microbiol. 17, 226–231.

    Article  CAS  Google Scholar 

  • Bartha, R., Linke, H. A. B. and Pramer, D. (1968). Pesticide transformations: production of chloroazobenzenes from chloroanilines. Science 161, 582–583.

    Article  PubMed  CAS  Google Scholar 

  • Bedard, D. L. (1990). Bacterial transformation of polychlorinated biphenyls. In Biotechnology and biodegradation, pp. 369–388. Edited by D. Kamely, A. Chakrabarty and G. Omenn. Woodlands, TX and Houston: Portfolio Publishing Co. and Gulf Publishing Co.

    Google Scholar 

  • Bedard, D. L., Haberl, M. L., May, R. J. and Brennan, M. J. (1987). Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850. Appl. Environ. Microbiol. 53, 1103–1112.

    PubMed  CAS  Google Scholar 

  • Bollag, JM & Liu S-Y (1985) Copolymerization of halogenated phenols and syringic acid. Pesticide Biochemistry and Physiology 23:261–272

    Article  CAS  Google Scholar 

  • Carney, B. F., Krockel, L., Leary, J. V. and Focht, D. D. (1989). Identification of Pseudomonas alcaligenes chromosomal DNA in the plasmid of the chlorobenzene-degrading recombinant Pseudomonas putida strain CB1-9. Appl. Environ. Microbiol. 55, 1037–1039.

    PubMed  CAS  Google Scholar 

  • Carson, R. (1962). Silent Spring. Boston: Houghton Miflin Co.

    Google Scholar 

  • deBont, J. A. M., Vorage, M. J. A. W., Hartmans, S. and van den Tweel, W. J. J. (1986). Microbial degradation of 1,3-dichlorobenzene. Appl. Environ. Microbiol. 52, 677–680.

    CAS  Google Scholar 

  • Dec, J. and Bollag, J.-M. (1994). Dehalogenation of chlorinated phenols during binding to humus. In Bioremediation through rhizosphere technology, pp. 102-111. Edited by T. A. Anderson and J. R. Coats. Washington: American Chemical Society.

    Google Scholar 

  • Donnelly, P. K., Hegde, R. S. and Fletcher, J. S. (1994). Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28,981–988.

    Article  Google Scholar 

  • Focht, D. D. (1993). Microbial degradation of chlorinated biphenyls. In Soil Biochemistry, pp. 341–407.

    Google Scholar 

  • Edited by J.-M. Bollag and G. Stozky. New York: Marcel Dekker

    Google Scholar 

  • Focht, D. D. and Brunner, W. (1985). Kinetics of biphenyl and polychlorinated biphenyl metabolism in soil. Appl. Environ. Microbiol. 50, 1058–1063.

    PubMed  CAS  Google Scholar 

  • Focht, D. D., Searles, D. B. and Koh, S.-C. (1996). Genetic exchange in soil between introduced chlorobenzoate degraders and indigenous biphenyl degraders. Appl. Environ. Microbiol. 62, 3910–3913.

    PubMed  CAS  Google Scholar 

  • Furukawa, K., Tonomura, K. and Kamibayashi, A. (1979). Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Appl. Environ. Microbiol. 38, 301–310.

    PubMed  CAS  Google Scholar 

  • Haddock, J. D., Horton, J. R. and Gibson, D. T. (1995). Dihydroxylation and dechlorination of chlorinated biphenyls by purified biphenyl 2,3-dioxygenases from Pseudomonas sp. strain LB400. J. Bacteriol. 177, 20–26.

    PubMed  CAS  Google Scholar 

  • Haigler, B. and Spain, J. C. (1989). Degradation of para-chlorotoluene by a mutant of Pseudomonas sp. strain JS6. Appl. Environ. Microbiol. 55, 372–379.

    PubMed  CAS  Google Scholar 

  • Haigler, B. E., Nishino, S. F. and Spain, J. C. (1988). Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl. Environ. Microbiol. 54, 294–301.

    PubMed  CAS  Google Scholar 

  • Harkness, M. R., McDermott, J. B., Abramowicz, D. A., Salvo, J. J., Flanagan, W. P., Stephens, M. L., Mondello, F. J., May, R. J., Lobos, J. H., Carroll, K. M., M.J., B., Bracco, A. A., Fish, K. M., Warner, G. L., Wilson, P. R., Dietrich, D. K., Lin, D. T., Morgan, C. B. and Gately, W. L. (1993). In situ stimulation of aerobic PCB biodegradation in Hudson River sediments. Science 259, 503–507.

    Article  PubMed  CAS  Google Scholar 

  • Havel, J. and Reineke, W. (1995). The influence of physicochemical effects on the microbial degradation of chlorinated biphenyls. Appl. Microbiol. Biotechnol. 43, 914–919.

    Article  PubMed  CAS  Google Scholar 

  • Hegde, R. S. and Fletcher, J. S. (1996). Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology. Chemosphere 32, 2471–2479.

    Article  CAS  Google Scholar 

  • Hernandez, B. S., Arensdorf, J. J. and Focht, D. D. (1995). Catabolic characteristics of biphenyl-utilising isolates which cometabolize PCBs. Biodegradation 6, 75–82.

    Article  CAS  Google Scholar 

  • Hernandez, B. S., Koh, S.-C, Chial, M. and Focht, D. D. (1997). Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil. Biodegradation 8, 153–158.

    Article  CAS  Google Scholar 

  • Hickey, W. J., Searles, D. B. and Focht, D. D. (1993). Enhanced mineralization of polychlorinated biphenyls in soil inoculated with chlorobenzoate-degrading bacteria. Appl. Environ. Microbiol. 59, 1194–1200.

    PubMed  CAS  Google Scholar 

  • Higson, F. K. and Focht, D. D. (1989). Bacterial metabolism of hydroxylated biphenyls. Appl. Environ. Microbiol. 55, 946–952.

    PubMed  CAS  Google Scholar 

  • Kohler, H.-P. E., Kohler-Staub, D. and Focht, D. D. (1988). Degradation of 2-hydroxybiphenyl and 2,2’-dihydroxybiphenyl by Pseudomonas sp. strain HBP1. Appl. Environ. Microbiol. 54, 2683–2688.

    PubMed  CAS  Google Scholar 

  • Kohler-Staub, D. and Kohler, H.-P. E. (1989). Microbial degradation of B-chlorinated four-carbon aliphatic acids. J. Bacteriol. 171, 1428–1434.

    PubMed  CAS  Google Scholar 

  • Kröckel, L. and Focht, D. D. (1987). Construction of chlorobenzene-utilising recombinants by progenitive manifestation of a rare event. Appl. Environ. Microbiol. 53, 2470–2475.

    PubMed  Google Scholar 

  • Lajoie, C. A., Layton, A. C. and Sayler, G. S. (1994). Cometabolic oxidation of polychlorinated biphenyls in soil with a surfactant-based field application vector. Appl. Environ. Microbiol. 60, 2826–2833.

    PubMed  CAS  Google Scholar 

  • Lajoie, C. A., Zylstra, G. J., Deflaun, M. F. and Strom, P. F. (1993). Development of field application vectors for bioremediation of soils contaminated with polychlorinated biphenyls. Appl. Environ. Microbiol. 59, 1735–1741.

    PubMed  CAS  Google Scholar 

  • Mackova, M., Macek, T., Ocenaskova, J., Burkhard, J., Demnerova, K. and Pazlarova, J. (1996). Selection of the potential plant degraders of PCB. Chemicke Listy 90, 712–713.

    CAS  Google Scholar 

  • Mars, A. E., Kasberg, T., Kaschabek, S. R., van Agteren, M. H., Janssen, D. B. and Reineke, W. (1997). Microbial degradation of chloroaromatics: Use of the meta-cleavage pathway for mineralization of chlorobenzene. J. Bacteriol. 179, 4530–4537.

    PubMed  CAS  Google Scholar 

  • Mars, A. E., Kingma, J., Kaschabek, S. R., Reineke, W. and Janssen, D. B. (1999). Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. J. Bacteriol. 181, 1309–1318.

    PubMed  CAS  Google Scholar 

  • Massé, R., Messier, F., Ayotte, C, Lévesque, M.-F. and Sylvestre, M. (1989). A comprehensive gas chromatographic/mass spectrometric analysis of 4-chlorobiphenyl bacterial degradation products. Biomed. Environ. Mass Spectrom. 18, 27–47.

    Article  Google Scholar 

  • McCullar (1996). Metabolism of chlorinated biphenyls and chlorobenzoates by Pseudomonas acidovorans M3GY. PhD Thesis. Riverside: University of California.

    Google Scholar 

  • Nishino, S. F., Spain, J. C, Belcher, L. A. and Litchfield, C. D. (1992). Chlorobenzene degradation by bacteria isolated from contaminated groundwater. Appl. Environ. Microbiol. 58, 1719–1726.

    PubMed  CAS  Google Scholar 

  • Omori, T., Ishigooka, H. and Minoda, Y. (1988). A new metabolic pathway for meta ring fission compounds of biphenyl. Agric. Biol. Chem. 52, 503–509.

    Article  CAS  Google Scholar 

  • Pettigrew, C. A., Haigler, B. E. and Spain, J. C. (1991). Simultaneous biodegradation of chlorobenzene and toluene by a Pseudomonas strain. Appl. Environ. Microbiol. 57, 157–162.

    PubMed  CAS  Google Scholar 

  • Pignatello, J. J. and Xing, B. (1996). Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 30, 1–11.

    Article  CAS  Google Scholar 

  • Reineke, W. and Knackmuss, H.-J. (1979). Construction of haloaromatics utilising bacteria. Nature 277, 385–386.

    Article  PubMed  CAS  Google Scholar 

  • Reineke, W. and Knackmuss, H.-J. (1984). Microbial metabolism of haloaromatics: Isolation and properties of a chlorobenzene-degrading bacterium. Appl. Environ. Microbiol. 47, 395–402.

    PubMed  CAS  Google Scholar 

  • Sander, P., Wittich, R. M., Fortnagel, P., Wilkes, H. and W., F. (1991). Degradation of 1,2,4-trichlorobenzene and 1,2,4,5-tetrachlorobenzene by Pseudomonas strains. Appl. Environ. Microbiol. 57, 1430–1440.

    PubMed  CAS  Google Scholar 

  • Schraa, G., Boone, M. L., Jetten, M. S. M., van Neerven, A. R. W., Colberg, P. J. and Zehnder, A. J. B. (1986). Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Appl. Environ. Microbiol. 52, 1374–1381.

    PubMed  CAS  Google Scholar 

  • Searles, D.B. (1995). Biodegradation of PCBs by biphenyl-and chlorobenzoate-utilising recombinants isolated from soil inoculated with a chlorobenzoate degrader. PhD Thesis. Riverside: University of California.

    Google Scholar 

  • Shi, Z., LaTorre, K. A., Ghosh, M. M., Layton, A. C, Luna, S. H., Bowles, L. and Sayler, G. S. (1998). Biodegradation of UV-irradiated polychlorinated biphenyls in surfactant micelles. Water Sci. Technol. 38, 25–32.

    CAS  Google Scholar 

  • Spain, J. C. (1990). Metabolic pathways for biodegradation of chlorobenzenes. In Pseudomonas biotransformations, pathogenesis, and evolving biotechnology, pp. 197–206. Edited by S. Silver, A. M. Chakrabarty, B. Iglewski and S. Kaplan. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Spain, J. C. and Nishino, S. F. (1987). Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl. Environ. Microbiol. 53, 1010–1019.

    PubMed  CAS  Google Scholar 

  • Steinberg, S. M., Pignatello, J. J. and Sawhney, B. L. (1987). Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores. Environ. Sci. Technol. 21, 1201–1208.

    Article  CAS  Google Scholar 

  • Stott, D. E., Martin, J. P., Focht, D. D. and Haider, K. (1982). Biodegradation, stabilization in humus, and incorporation into soil biomass of 2,4-D and chlorocatechol carbons. Soil Sci. Soc. Am. J. 47, 66–70.

    Article  Google Scholar 

  • Stratford, J., Wright, M. A., Reineke, W., Mokross, H., Havel, J., Knowles, C. J. and Robinson, G. K. (1996). Influence of chlorobenzoates on the utilisation of chlorobiphenyls and chlorobenzoate mixtures by chlorobiphenyl/chlorobenzoate-mineralising hybrid bacterial strains. Arch. Microbiol. 165, 213–218.

    Article  PubMed  CAS  Google Scholar 

  • Taira, K., Hayase, N., Arimura, N., Yamashita, S., Miyazaki, T. and Furukawa, K. (1988). Cloning and nucleotide sequence of the 2,3-dihydroxybiphenyl dioxygenase gene from the PCB-degrading strain of Pseudomonas paucimobilis Q1. Biochemistry 27, 3990–3996.

    Article  PubMed  CAS  Google Scholar 

  • Trudgill, P. W. (1994). Microbial metabolism and transformation of selected monoterpenes. In Biochemistry of microbial degradation, pp. 33–62. Edited by C. Ratledge. Dordrecht: Springer Science+Business Media Dordrecht.

    Chapter  Google Scholar 

  • Tucker, E. S., Saeger, V. W. and Hicks, O. (1975). Activated sludge primary biodegradation of polychlorinated biphenyls. Bull. Environ. Contam. Toxicol. 14, 705–713.

    Article  PubMed  CAS  Google Scholar 

  • van der Meer, J. R., van Neerven, A. R. W., de Vries, E. J., de Vos, W. M. and Zehnder, A. J. B. (1991). Cloning and characterisation of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51. J. Bacteriol. 173, 6–15.

    PubMed  Google Scholar 

  • Waid, J. S. (1986). PCBs and the environment. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Wu, Q. Z., Bedard, D. L. and Wiegel, J. (1999). 2,6-dibromobiphenyl primes extensive dechlorination of Aroclor 1260 in contaminated sediment at 8-30C by stimulating growth of PCB-dehalogenating microorganisms. Environ. Sci. Technol. 33, 595–602.

    Article  CAS  Google Scholar 

  • Zwiernik, M. J., Quensen III, J. F. and Boyd, S. A. (1998). FeS04 amendments stimulate extensive anaerobic PCB dechlorination. Environ. Sci. Technol. 32, 3360–3365

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Focht, D.D., McCullar, M.V., Searles, D.B., Koh, SC. (2002). Mechanisms Involving the Aerobic Biodegradation of PCB in the Environment. In: Agathos, S.N., Reineke, W. (eds) Biotechnology for the Environment: Strategy and Fundamentals. Focus on Biotechnology, vol 3A. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0357-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0357-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3907-9

  • Online ISBN: 978-94-010-0357-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics