Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 55))

  • 830 Accesses

Abstract

These lectures cover an aspect of energy-assisted chemical vapour deposition (CVD) that involves the use of light, either in the UV or visible, to bring about some beneficial change in the deposition process. This can entail an enhancement in deposition rate or an improvement in film quality such as density, composition or reduced defect concentration. The range of materials covered in these lectures will include oxides, semiconductors and metals. The interaction of light with either the precursor vapour or the substrate can enable a stimulation of the precursor reaction by a number of different mechanisms that will be explored in these lectures. The practical realisation of photo-assisted CVD can be complex but improved light sources and reactor designs now offers a wider choice in achieving a practical system. The choice of light sources, precursors and reaction chambers will be covered in some depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Irvine S. J. C., Mullin J. B., Robbins D. J. and Glasper J. L., (1985) A study of UV absorption spectra and photolysis of some Group n and Group VI alkyls, J. Electrochem. Soc. 132, 968

    Article  CAS  Google Scholar 

  2. Jackson R. L., Baum T. H., Kodas T. T., Ehrlich D. J., Tyndall G. W. and Comita P. B., chapter 7, “Laser deposition” in Laser Microfabrication: Thin Film Processes and Lithography, Eds. D. J. Ehrlich and J. Y. Tsao, (1989). Academic Press, Inc.

    Google Scholar 

  3. Chen C. J. and Osgood R M., (1984) A spectroscopic study of the excited states of dimethylzinc, dimethylcadmium and dimethylmercury, J. Chem. Phys. 81, 327

    Article  CAS  Google Scholar 

  4. Liu B., Hicks R. F. and Zinck J. J. (1992). J. Crystal Growth 123, 500

    Article  CAS  Google Scholar 

  5. Fujita. S., Tanabe A, Sakamoto T., Isemura M. and Fujita S. (1988) Investigation of photo-association mechanism for growth rate enhancement in photo-assisted OMVPE of ZnSe and ZnS, J. Crystal Growth 93, 259

    Article  CAS  Google Scholar 

  6. Yoshikawa A and Okamoto T. and Fujimoto T. (1991) Effects of Ar ion laser irradiation on MOVPE of ZnSe using DMZn and DMSe as reactants, J. Crystal Growth 107, 653.

    Article  CAS  Google Scholar 

  7. Yamada T, Iga R. and Sugiura H. (1991) Appl. Phys. Lett. 59, 958.

    Article  CAS  Google Scholar 

  8. Nishio, M., Ogawa, H., and Yoshida A. (1991) J. Crystal Growth 115, 284.

    Article  CAS  Google Scholar 

  9. Irvine, S.J.C., Hill, H., Hails, J.E, Mullin, JB., Bamett, S.J., Blackmore, G.W., and Dosser, O.D. (1990) Laser-induced selected area epitaxy of CdTe andf HgTe, J. Vac. Sci. Technol. A 8, 1059.

    Article  CAS  Google Scholar 

  10. Stutius, W. (1982) Growth and doping of ZnSe and ZnSxSe1-x by organometallic chemical vapour deposition, J. Crystal Growth 59, 1.

    Article  CAS  Google Scholar 

  11. Stanzl, H., Wolf, K., Hahn, B., and Gebhardt, W. (1994) Low pressure metalorganic vapor phase epitaxy of ZnSe-based light emitting diodes, J. Crystal Growth 145, 918.

    Article  CAS  Google Scholar 

  12. Taudt, W., Lampe, S., Sauerlander, F., Sollner, J., Hamadeh, H., Heuken, M., Jones, A.C., Rushworth, S., O’Brien, P., and Malik, M.A. (1996) Nitrogen doping of ZnSe with trimethylsilylazide or bisditrimethyl-silylamidozinc during metalorganic vapour phase epitaxy, J. Crystal Growth 169, 243.

    Article  CAS  Google Scholar 

  13. Heuken, M. Sollner, J., Taudt, W., Lampe, S., Hamadeh, H. (1997) Metalorganic chemical vapour epitaxy and doping of ZnMgSSe heterostrucctures for blue emitting devices, J. Crystal growth 170, 30.

    Article  CAS  Google Scholar 

  14. Irvine, S.J.C., and Bajaj, J. (1994) A study of the growth kinetics of II-VI metalorganic vapour phase epitaxy using in situ laser reflectometry, J. Crystal Growth 145, 74.

    Article  CAS  Google Scholar 

  15. Ahmed, M.U., and Irvine, S.J.C. (2000) In situ post annealing treatment of nitrogen-doped ZnSe grown using photo-assisted MOVPE, J. Electronic Materials 29, 169.

    Article  CAS  Google Scholar 

  16. Ahmed, M.U., Irvine, S.J.C., and Stafford, A. (1999) Importance of initial nucleation step on low temperature photo-assisted MOVPE growth of ZnSe, J. Materials Science: Materials in Electyronics 10, 595.

    Article  CAS  Google Scholar 

  17. Ahmed, M.U., Prete, P., Irvine, S.J.C, Stafford, A., Smith, L.M., Jones, A.C., and Rushworth, S.A. (1998) Mechanism for photo-assisted MOVPE nitrogen doping of ZnSe, J. Crystal Growth 184/185, 429.

    Article  CAS  Google Scholar 

  18. Tarui, Y., Aota, K., Sugiura, T., and Saitoh, T. (1984) Phtochemical vapor deposition of amorphous silicon using mercury photosensitization of disilane, Mat. Res. Soc. Symp. Proc., Vol.29, 109.

    Article  CAS  Google Scholar 

  19. Peters, W. (1981) Technical Digest International Electron Devices Meeting, 240.

    Google Scholar 

  20. Irvine, S.J.C, Mullin, J.B., and Tunnicliffe, J. (1984) Photosensitisation: a stimulant for the low temperature growth of epitaxial HgTe, J. Crystal Growth 68, 188.

    Article  CAS  Google Scholar 

  21. Yu, Z., Sheng, T.Y., Zarnani, H., and Collins, G.J. (1989) Windowless wide area VUV lamp for energy assisted CVD, J. Mat. Res. Soc. Symp. Proc. 129, 227.

    Article  CAS  Google Scholar 

  22. Dunn, M.H., and Ross, J.N. (1977) in Progress in Quantum Electronics (eds. J.H. Sanders and S. Stenholm) Pegamon Press, London.

    Google Scholar 

  23. Walling, J.C. (1987) in Tunable Lasers (eds. L.F. Mollenauer and J.C. White), Springer Verlag, New York.

    Google Scholar 

  24. Danielmeyer, H.G. (1976) in Lasers (eds. A.K. Levine and A.J. DeMaria), Marcel Dekker, New York, 4.

    Google Scholar 

  25. Reintjes, J.F. (1985) in Laser Handbook (eds. M. Bass and M.L. Stitch), North Holland, Now York.

    Google Scholar 

  26. Wilke, V., and Schmidt, W. (1979) Appl. Phys. Lett. 18, 177.

    Article  Google Scholar 

  27. Kaliwoh, N., Zhang, J.Y., and Boyd, I.W. (2000) Photo-induced preparation of (Ta2O5)1-x(TiO2)x dielectric thin films using sol-gel processing with xenon excimer lamps, Applied Surface Science 168, 13.

    Article  CAS  Google Scholar 

  28. Zhang, J.Y., Dusastre, V., and Boyd, I.W. (2001) Chracterisation of ultraviolet annealed tantalum oxide films deposited by photo-CVD using 172 nm excimer lamp, Mat. Sci. in Semiconductor Processing 4, 313.

    Article  CAS  Google Scholar 

  29. Kogelschatz, U., Esrom, H., Zhang, J.Y., and Boyd, I.W. (2000) High intensity sources of incoherent UV and VUV excimer radiation for low temperature materials processing, Applied Surface Sceince 168, 29.

    Article  CAS  Google Scholar 

  30. Seifert, W., Carlsson, N., Johansson, J., Pistol, M.-E., and Samuelson, L. (1997) In situ growth of nano-structures by metal-organic vapour phase epitaxy, J. Crystal Growth 170, 39.

    Article  CAS  Google Scholar 

  31. Irvine, S.J.C, Mullin, J.B., Hill, H., Brown, G.T., and Barnett, S.J. (1988) Photo-stimulated II-VI crystal growth: a study of low temperature epitaxy, J. Crystal Growth 86, 188.

    Article  CAS  Google Scholar 

  32. Kisker, D.W., and Feldman, R.D. (1985) Photon assisted OMVPE growth of CdTe, J. Crystal growth 72, 102.

    Article  CAS  Google Scholar 

  33. Irvine, S.J.C. (1987) UV photo-assisted crystal growth of II-VI compounds, CRC Critical reviews in Solid State and Materials Sceicne 13, 279.

    Article  CAS  Google Scholar 

  34. Irvine, S.J.C., Hill, H., Hails, J.E., Mullin, J.B., Barnett, S.J., Blackmore, G.W., and Dosser, O.D. (1990) Laser-induced selected area epitaxy of CdTe and HgTe, J. Vac. Sci. Technol. A 8, 1059).

    Article  CAS  Google Scholar 

  35. Aylett, M.R. (1986) Chemtronics 1, 146.

    CAS  Google Scholar 

  36. Lee, G.H., Yamamoto, Y., Kourogi, M., and Ohtsu, M. (2001) Blue shift in room temperature photoluminescence from photo-chemical vapor deposited ZnO films, Thin Solid Films 386, 117.

    Article  CAS  Google Scholar 

  37. Yoshida, A., Sato, H., Uchida, M., Wakahara, A., Hoshino, A., and Machida, H. (2001) Copper film prepared with ArF excimer laser, Applied Surface Science 169, 493.

    Article  Google Scholar 

  38. Vidal, S., Maury, F., Gleizes, A., and Mijoule, C. (2000) Photo-assisted MOCVD of copper using Cu(hfa)(COD) as precursor, Applied Surface Science 168, 1.

    Article  Google Scholar 

  39. Tamura, S., Ishida, T., Magara, H., Mihara, T., Mochizuki, S., and Tatsuta, T. (2001) Influence of UV light irradiation on film thickness distribution of tin oxide films by photochemical vapour deposition, Applied Surface Science 169, 425.

    Article  Google Scholar 

  40. Kobayashi, H., Uebou, Y., Ishida, T., Tamura, S., Mochizuki, S., Mihara, T., Tabuchi, M., Kageyama, H., and Yamamoto, Y. (2001) Electrochemical property of tin oxide thin film by photo-CVD process, J. Power Sources 97–98, 229.

    Article  Google Scholar 

  41. Yoshida, A., and Wakahara, A. (1999) Zinc oxide films prepared with undulator beam, Jpn J. Appl. Phys., Parti, 38, 218.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Irvine, S.J.C. (2002). Photochemical Vapour Deposition of Thin Films. In: Pauleau, Y. (eds) Chemical Physics of Thin Film Deposition Processes for Micro- and Nano-Technologies. NATO Science Series, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0353-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0353-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0525-1

  • Online ISBN: 978-94-010-0353-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics