Skip to main content

Selective Chemical Vapor Deposition

  • Chapter

Part of the book series: NATO Science Series ((NAII,volume 55))

Abstract

Selective area deposition has received much attention in IC technology in the past forty years. Its advantage in IC technology is that one saves a mask and a full sequence of lithography, etching, resist removal and cleaning. In Selective Chemical Vapor Deposition (CVD) the selectivity is obtained by the different chemical behavior of reactants with different surfaces. The advantage of selective CVD is the self-alignment with respect to the previous pattern, which allows for tight design-rules in this phase of the IC production. Selective epitaxial Silicon deposition was investigated in the sixties of the last century. Later selective Tungsten, selective epitaxial SiGe, selective IH-V and II-VI compounds and recently selective deposition of Copper became intensively researched subjects. In these cases of selective deposition one etches a window in a dielectric to the substrate and then deposits the required layer. Due to nucleation matters it starts to grow immediately on the substrate material whereas the nucleation on the dielectric is retarded. However, in nature one never gets advantages for free. Selectivity loss, reaction with the substrate material, facetting, lateral overgrowth on the dielectric and pattern-density dependency are major problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayward D.A. and Trapnell B.M.W. (1964) Chemisorption, Butterworths, London.

    Google Scholar 

  2. Smith D.L. (1995), Thin Film Deposition, McGraw-Hill Inc.

    Google Scholar 

  3. Suntola, T. (1989) Atomic Layer Epitaxy, in Materials Science Reports 4, 261–312 and (1994) Atomic Layer Epitaxy in D.T.Hurle (ed.), Handbook of Crystal Growth-Thin Films and Epitaxy, Elsevier Science B.V.North Holland, pp. 605-663.

    Article  CAS  Google Scholar 

  4. Holleman J., Hasper A., and Middelhoek J. (1991) In Situ Growth Rate Measurements of Selective LPCVD of Tungsten, J.Electrochem.Soc. 138, 989–993.

    Article  CAS  Google Scholar 

  5. Claassen, W.A.P. (1981) Kinetic studies on the nucleation and growth of Silicon via Chemical Vapor Deposition, Thesis University of Nijmegen.

    Google Scholar 

  6. Walton D. (1962) Nucleation of Vapor Deposits, J.Chem.Phys. 37, 2182–2188.

    Article  CAS  Google Scholar 

  7. Venables J.A. (1973) Rate Equation Approaches to Thin Film Nucleation Kinetics, Phil. Mag. 27, 697–743

    Article  CAS  Google Scholar 

  8. Rem J.B., Holleman J. and Verweij J.F. (1997) Incubation time measurements in thin-film deposition, J.Electrochem.Soc. 144, 2101–2106.

    Article  CAS  Google Scholar 

  9. John E.J. Schmitz (1992) Chemical Vapor Deposition of Tungsten and Tungsten Silicides, Noyes Publications, New Jersey.

    Google Scholar 

  10. Chemsage trade mark.

    Google Scholar 

  11. Leusink G.J., Kleijn C.R., Oosterlaken T.G.M., Janssen G.C.A.M. and Radelaar S. (1992) Growth kinetics and inhibition of growth of chemical vapor deposited thin tungsten films on silicon from tungsten hexafluoride, J.Appl.Phys. 72, 490–498.

    Article  CAS  Google Scholar 

  12. McConica C.M. and Krishnamani K. (1986) The Kinetics of LPCVD Tungsten Deposition in a Single Wafer Reactor, J.Electrochem.Soc. 133, 2542–2548.

    Article  CAS  Google Scholar 

  13. Pauleau Y. and Lami Ph. (1985) Kinetics and Mechanism of Selective Tungsten Deposition by LPCVD, J.Electrochem.Soc 132, 2779–2784.

    Article  CAS  Google Scholar 

  14. Oosterlaken T.G.M. et al. (1996) The Hydrogen Reduction of WF6: A Kinetic Study Based on In Situ Partial Pressure Measurements, J.Electrochem. Soc. 143, 1668–74.

    Article  CAS  Google Scholar 

  15. Holleman J., Hasper A. and Kleijn C.R. (1993) Loading Effects on Kinetical and Electrical Aspects of Silane-Reduced LPCVD Selective Tungsten, J.Electrochem.Soc. 140, 818–824.

    Article  CAS  Google Scholar 

  16. Ammerlaan, J. (1994), Kinetics and Characterization of Tungsten CVD Processes. Thesis Technical University of Delft.

    Google Scholar 

  17. Leusink G. (1994) Growth and properties of CVD-W films for microelectronic applications, Thesis Technical University of Delft.

    Google Scholar 

  18. Jeugd, K. van der (1992) Chemical Vapour Deposition of Tungsten from WF6/SiH4 and WF6/GeH4, Thesis Technical University of Delft.

    Google Scholar 

  19. Bradbury D.R. and Kamins T.I. (1986) Effect of Insulator Surfece on Selective Deposition of CVD Tungsten Films, J.Electrochem.Soc 133, 1214–1216.

    Article  CAS  Google Scholar 

  20. Chow et al. (1991), MRS Tungsten Workshop VI, 89.

    Google Scholar 

  21. Lami Ph. and Pauleau Y.(1988) Evaluation of the selective Tungsten Deposition Process for VLSI Circuit Applications, J.Electrochem.Soc 135, 980–984.

    Article  CAS  Google Scholar 

  22. McConica C.M. and Cooper K. (1988) Tungsten Nucleation on Thermal Oxide during LPCVD of Tungsten by the Hydrogen Reduction of Tungsten Hexafluoride, J.Electrochem.Soc. 135, 1003–1008.

    Article  CAS  Google Scholar 

  23. Joyce B.D. and Bradley J.A. (1962) Selective Epitaxial Deposition of Silicon, Nature, 195, 485–486.

    Article  CAS  Google Scholar 

  24. Bashir R. et al. (2000) Reduction of sidewall defect induced leakage currents by the use of nitrided field oxides in silicon selective epitaxial growth isolation for advanced ultralarge scale integration, J. Vac. Sci. Technol. B, 18, 695–699.

    Article  CAS  Google Scholar 

  25. Samavedam S. B. et al. (2000), Elevated source drain devices using silicon selective growth, J. Vac. Sci.Technol. B, 18, 1244–1250.

    Article  CAS  Google Scholar 

  26. Meyerson B.S et al. (1988) Cooperative growth phenomena in silicon/germanium low-temperature epitaxy, Appl.Phys.Lett. 53, 2555–2557.

    Article  CAS  Google Scholar 

  27. Holleman J., Kuiper A.E.T. and Verweij J.F. (1993) Kinetics of the LPCVD of Polycrystalline Germanium-Silicon Alloys from SiH4 and GeH4, J. Electrochem.Soc. 140, 1717–1722

    Article  CAS  Google Scholar 

  28. Meyerson B.S. (1986) Low temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition, Appl.Phys.Lett. 48, 797–799.

    Article  CAS  Google Scholar 

  29. Katsuyoshi Wasio et al. (2000) SiGe HBTs and ICs for optical-fiber communication systems, Thin Solid Films, 369, 352–357.

    Article  Google Scholar 

  30. Friedrich Schäffler (1997) High mobility Si and Ge structures, Semicond.Sci.Technol. 12, 1515–1549.

    Article  Google Scholar 

  31. Raaymakers I.J.,et al. (1999) Enabling technologies for forming and contacting shallow junctions in Si: HF-vapor cleaning and selective epitaxial growth of Si and SiGe, J. Vac.Sci. Technol.B 17, 2311–2319

    Article  Google Scholar 

  32. Runyan W.R. and Bean K.E.(1990) Semiconductor Integrated Circuit Processing Technology, Adison-Wesley Publishing Company.

    Google Scholar 

  33. Pagliaro jr. R. et al. (1987) Uniformly Thick Selective Epitaxial Silicon, J.Electrochem.Soc. 134, 1235–1238.

    Article  CAS  Google Scholar 

  34. Gardeniers J.G.E. (1990) Crystal Habit of CVD-Grown Silicon in Relation to Adsorption Processes, Thesis University of Nijmegen.

    Google Scholar 

  35. Akihiko Ishitani et al. (1985) Facet Formation in Selective Silicon Epitaxial Growth, Jpn. J.Appl.Phys. 24, 1267–1269.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Holleman, J. (2002). Selective Chemical Vapor Deposition. In: Pauleau, Y. (eds) Chemical Physics of Thin Film Deposition Processes for Micro- and Nano-Technologies. NATO Science Series, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0353-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0353-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0525-1

  • Online ISBN: 978-94-010-0353-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics