Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 55))

Abstract

The application of metal-organic chemistry has played a major role in the development of thin film deposition by Chemical Vapour Deposition (CVD) and Sol-Gel techniques [12]. The success of chemical synthesis routes is largely attributed to the availability of molecular compounds that can be transformed via solution (Sol-Gel) [36] or gas phase (CVD) [7,8] reactions into high-purity coatings of desired ceramics or composites. In contrast to the solid-state reactions, the reactions in vapor or liquid phase allow a controlled interaction of atoms or molecules to form uniform films or particles. Further, the flexibility to combine different ligand or metal combinations allows the precursor designing to meet the demands of the target material. Assembling all the phase-forming elements in a single molecular source augments the advantages of chemical processing and simultaneously reduces the process parameters. In addition, the molecule-to-material transformation requires much lower temperatures than those required for the conventional (mixing, grinding and calcining) methods [9]. The clear practical implications of nanostructured materials [10,11] with a precise control over composition, size, size distribution and morphology has led to an upsurge of research activity in the synthesis and chemical processing of molecular precursors [1217]. Among the various inorganic compounds—halides, nitrates, acetates, carboxylates, ß-diketonates, alkyls, alkoxides—used in the synthesis of metal oxides, metal alkoxides (M(0R)n) are especially attractive as precursors [1824]. Some of their salient features include high purity, easy transformation into oxides with formation of volatile byproducts, ability to form homogeneous solution in different solvents and conditions and more importantly the facile formation of heterometal species useful for the synthesis of multicomponent materials [25]. The present article is intended to provide a brief account of the recent developments in the field of heterometal alkoxide chemistry and their applications in obtaining nanocrystalline thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davazoglou, D. Vahlas, C. Eds. (2001) Special Issue on the Proceedings of the Thirteenth European Conference on CVD J. Phys. IV, 11.

    Google Scholar 

  2. Cheetham, A. K. Brinker, C. J. McCartney, M. L. and Sanchez, C. (1994) Better Ceramics Through Chemistry Mat. Res. Soc. Symp. Proc. 360.

    Google Scholar 

  3. Klein, L. C. Ed. (1988) Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Speciality Forms Noyes Pub., Park Ridge, NJ.

    Google Scholar 

  4. Brinker, C. J. Scherer, G. W. (1990) Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing Academic Press, New York.

    Google Scholar 

  5. Hench, L. L. West, J. K. (1990) Chem. Rev. 90, 33.

    Article  CAS  Google Scholar 

  6. Livage, J. (1994) Mat. Sci. Forum Vols. 152-153, 43.

    Article  CAS  Google Scholar 

  7. Kodas, T. T. Hampden-Smith, M. J. (1994) The Chemistry of Metal CVD, VCH, New York.

    Book  Google Scholar 

  8. Rees, W. S.Jr. (1996) CVD of Nonmetals, VCH, Weinheim, Germany.

    Book  Google Scholar 

  9. Chandler, C. D. Roger, C. Hampden-Smith M. J. (1993) Chem. Rev. 93, 1205.

    Article  CAS  Google Scholar 

  10. Edelstein, A. S. and Cammarata, R. C. Eds. (1996) Nanomaterials: Synthesis, properties and applications, Institute of Physics Pub., Bristol and Philadelphia.

    Google Scholar 

  11. Fendler, J. H. Ed. (1998) Nanoparticles and Nanostructured Films, WILEY-VCH, Germany.

    Google Scholar 

  12. Traversa, E. Sakamoto, M. Sadaoka, Y. (1998) Part. Sci. Technol. 16, 185.

    Article  CAS  Google Scholar 

  13. Pramanik, P. (1996) Bull. Mater. Sci., 19(6), 957.

    Article  CAS  Google Scholar 

  14. Mclnnes, A. N. Power, M. B. Barren, A. R. (1993) Chem. Mater. 5, 1344.

    Article  Google Scholar 

  15. Ma, L. Payne, D. A. (1994) Chem. Mater. 6, 875.

    Article  CAS  Google Scholar 

  16. Morstein, M. Poszgai, I. Spencer, N. D. (1999) Chem. Vap. Depositions 5, 151.

    Article  CAS  Google Scholar 

  17. Lessing, P. A. (1989) Am. Ceram. Soc. Bull. 68, 1002.

    CAS  Google Scholar 

  18. Mehrotra, R. C. Singh, A. (1997) Prog. Inorg. Chem. 46, 239.

    Article  CAS  Google Scholar 

  19. Mehrotra, R. C. (1990) Chemtracts 2, 389.

    CAS  Google Scholar 

  20. Roy, R. (1987) Science 238, 1664.

    Article  CAS  Google Scholar 

  21. Bradley, D. C. (1989) Chem. Rev. 89, 1317.

    Article  CAS  Google Scholar 

  22. Segal, D. (1997) J. Mater. Chem. 7, 1297.

    Article  CAS  Google Scholar 

  23. Barlett, J. R. Woolfrey, J. L. (1996) Chem. Mater.

    Google Scholar 

  24. Veith, M. Mathur, S. Mathur, C. (1998) Polyhedron, 17, 1005.

    Article  CAS  Google Scholar 

  25. Bradley, D. C. Mehrotra, R. C. Gaur, D. P. (1978) Metal Alkoxides, Academic Press, London.

    Google Scholar 

  26. Xu, R. (1997) J. Mater.Res. 49, 1.

    Google Scholar 

  27. Jones, K. Davies, T. J. Emblem, H.G. Parkes, P. (1986) Mat. Res. Soc. Symp. Proc. 73, 111.

    Article  CAS  Google Scholar 

  28. Veith, M. Mathur, S. Lecerf, N. Huch, V. Decker, T. Beck, H. P. Eiser, W. Haberkorn, R. (2000) J. Sol-Gel Sci.Tech., 17, 145.

    Article  CAS  Google Scholar 

  29. Hirano, S. Hayashi, T. Noaski, K. Kato, K. (1989) J. Am. Ceram. Soc. 72, 707.

    Article  CAS  Google Scholar 

  30. Cinibulk, M. K. (1995) J. Mater. Res. 10, 71.

    Article  CAS  Google Scholar 

  31. Callender, R. L. Barron, A. R. (2000) J. Am. Ceram. Soc. 83, 1777.

    Article  CAS  Google Scholar 

  32. Arai, K. Namikawa, H. Kumata, K. Honda, T. Ishii, Y. Handa, T. (1986) J. Appl. Phys. 59, 3430.

    Article  CAS  Google Scholar 

  33. Esparza, A. Garcia, M. Falcony, C. (1998) Thin Solid Films 14, 325.

    Google Scholar 

  34. Cowley, A. H. Jones, R. A. (1989) Angew. Chem. 28, 1208.

    Article  Google Scholar 

  35. Rocheleau, R. E., Zhang, Z. Gilje, J. W. (1994) Meese-Marktscheffel Chem. Mater. 6, 1615.

    Article  CAS  Google Scholar 

  36. Neumeyer, D. Ekerdt, J. G. (1996) Chem. Mater. 8, 9.

    Article  Google Scholar 

  37. Bochmann, M. (1996) Chem. Vap. Deposition 2, 85.

    Article  CAS  Google Scholar 

  38. Schubert, U. (1996) J. Chem. Soc, Dalton Trans. 3343.

    Google Scholar 

  39. Narula, C. K. Weber, W. H. Ying, J. Y. Allard, L. F. (1997) J. Mater. Chem. 7, 1821.

    Article  CAS  Google Scholar 

  40. Meyer, F. Hempelmann, R. Mathur, S. Veith, M. (1999) J. Mater. Chem. 9, 1755.

    Article  CAS  Google Scholar 

  41. Veith, M. Lecerf, N. Mathur, S. Shen, H. Hüfher, S. (1999) Chem. Mater. 11, 3103.

    Article  CAS  Google Scholar 

  42. Veith, M. Mathur, S. Lecerf, N. Bartz, K. Heinz, M. Huch, V. (2000) Chem. Mater. 12, 271.

    Article  CAS  Google Scholar 

  43. Crosbie, M. J. Wright, P. J. Davies, H. O. Jones, A. C. Leedham, T. J. O’Brien,P. Critchlow, G. W. (1999) Chem. Vap. Deposition, 5, 9.

    Article  CAS  Google Scholar 

  44. Devi, A. Rogge, W. Wohlfart, A. Hipler, F. Becker, H. W. Fischer, R. A. (2000) Chem. Vap. Deposition 6, 245.

    Article  CAS  Google Scholar 

  45. Veith, M. Altherr, A. Lecerf, N. Mathur, S. Valtchev, K. and Fritscher, E. (1999) Nanostruct. Mater. 12, 191.

    Article  Google Scholar 

  46. Veith, M. Altherr, A. and Wolfanger, H. (1999) Adv. Materials, CVD 5, 87.

    Article  CAS  Google Scholar 

  47. Veith, M. (2000) Mat. Sci. Forum 343-346, 531.

    Article  CAS  Google Scholar 

  48. Mathur, S. Lecerf, N. Shen H. Veith, M. and Huefner S. (2001) Scripta mater. 44, 2157.

    Article  Google Scholar 

  49. Veith, M. Mathur, S. Kareiva, A. Jillavi, M. Zimmer, M. and Huch, V. (1999) J. Mater. Chem. 9, 3069.

    Article  CAS  Google Scholar 

  50. Meyer, F. Dierstein, A. Beck, C. Hempelmann, R. Mathur, S. Veith, M. (1999) Nanostruct. Mater. 12, 71.

    Article  Google Scholar 

  51. Veith, M. Mathur, S. Huch V. and Decker, T. (1998) Eur. J. Inorg. Chem. 1327.

    Google Scholar 

  52. Pierson, H. O. (1992) Handbook of Chemical Vapour Deposition, Noyes Publications, Park Ridge, NJ.

    Google Scholar 

  53. Ao, B. Kummerl, L. Harrer, D.(1995) Adv. Mater. 7, 495.

    Article  CAS  Google Scholar 

  54. Bradley, F.N. (1976) Materials for Magnetic Functions; Hayden, New York.

    Google Scholar 

  55. Kim, Y. J. Gao, Y. Chambers, S. A. (1997) Surf. Sci. 371, 358.

    Article  CAS  Google Scholar 

  56. Dhara, S. Rastogi, A.C. and Das, B.K. (1994) Thin Solid Films 239, 240.

    Article  CAS  Google Scholar 

  57. Lind, D.M. Berry, S.D. Chern, G. Mathias, H. and Testardi, L.R. (1992) Phys. Rev. B 45,1838.

    Article  CAS  Google Scholar 

  58. Nafis, S. Tang, Z.X. Dale, B. Sorensen, C. M. Hadjipanayis, G. C., Klabunde, K. J. (1988) J. Appl. Phys. 64, 5836.

    Article  Google Scholar 

  59. Mathur, S. Veith, M. Sivakov, V. Shen, H. Gao, H. B. (2001) J. Phys. IV 11, 487.

    Google Scholar 

  60. Veith, M. Kneip, S. Jungmann, A. and Hüfner, S. (1997) Z. Anorg. allg. Chem. 623, 1507.

    Article  CAS  Google Scholar 

  61. Ziolo, R. F. Giannelis, E. P. Weinstein, B. A. O’Horo, M. P. Ganguly, B. N. Mehrotra, V. Russell, M. W. Huffman, D. R. (1992) Science 257, 291.

    Article  Google Scholar 

  62. Mellor, J. W. (1937) Trans. Cer. Soc. 36, 1.

    CAS  Google Scholar 

  63. Hedvall, J. A. and Heuberger, J. (1921) Z Anorg. Chem. 116, 137.

    Article  CAS  Google Scholar 

  64. Baker, E. and Burch, R. Yugin, N. (l991) Appl. Cat. 73, 135.

    Article  Google Scholar 

  65. Ohgushi, T. and Umeno, S. (1987) Bull. Chem. Soc. Jpn. 60, 4457.

    Article  CAS  Google Scholar 

  66. Mathur, S. Veith, M. Haas, M. Shen, H. Hüfner, S. Haberkorn, R. Beck, H. P. Jillavi, M. (2001) J. Amer. Ceram. Soc. 84(9), 1921.

    Article  CAS  Google Scholar 

  67. Mathur, S. Veith, M. Haas, M. (to be published).

    Google Scholar 

  68. Schmool, D. S. Keller, N. Guyot, M. Krishnan, R. Tessier, M. (1999) J. Magn Magn. Mater. 195(2), 291.

    Article  CAS  Google Scholar 

  69. Schmool, D. S. Keller, N. Guyot, M. Krishnan, R. Tessier, M. (1999) J. Appl. Phys. 86(10), 5712.

    Article  CAS  Google Scholar 

  70. Mathur, S. Shen, H. Lecerf, N. Fjellvag, H. Goya, G. (2001) Adv. Mater. Submitted for publication.

    Google Scholar 

  71. Dzyaloshinsky, I.E. (1958) J. Phys. Chem. Solids 4, 241.

    Article  CAS  Google Scholar 

  72. Bozorth, R. M. (1958) Phys. Rev. Lett. 1, 362.

    Article  CAS  Google Scholar 

  73. Treves, D. (1965) J. Appl. Phys. 36, 1033.

    Article  CAS  Google Scholar 

  74. Moulson, A. J. and Herbert, J. M. (1986) Electroceramics: Materials, Properties and Applications, Chapman and Hall, London.

    Google Scholar 

  75. Riman, R. E. (1993) High-perform ance Ceramics Eds. Pugh, R. and Bergstroem, L. Marcel-Dekker, New York.

    Google Scholar 

  76. Goodman, G. in (1986) Ceramic Materials for Electronics ed. Buchanan, R. C. Marcel-Dekker, New York.

    Google Scholar 

  77. Wu, E. Chen, K. C. and Mackenzie, J. D. in (1984) Better Ceramics Through Chemistry Eds. Brinker, C. J. Clark, D. E. and Ulrich, D. R. North Holland, Amsterdam.

    Google Scholar 

  78. Deb, K. K. Hill, M. D. and Kelly, J. F. (1992) J. Mater. Res., 7, 3296.

    Article  CAS  Google Scholar 

  79. Veith, M. and Kneip, S. (1994) J. Mater. Sci. Lett. 13, 335.

    Article  CAS  Google Scholar 

  80. Mathur, S. Shen, H. Veith, M. Meng, X. K. Vehoff, H. Appl. Phys. Lett. (submitted).

    Google Scholar 

  81. Beecroft, L. L. Ober, C. K. (1997) Chem. Mater. 9, 1302.

    Article  CAS  Google Scholar 

  82. Tissue, B. M. (1998) Chem. Mater. 10, 2837.

    Article  CAS  Google Scholar 

  83. Thomas, I. M. Payne, S. A. Wilke, G. D. (1992) J. Non-Cryst. Solids 151,183.

    Article  CAS  Google Scholar 

  84. Jaque, D. Enguita, O. García Solé, J. Jiang, A. D. and Luo, Z. D. (2000) Appl. Phys. Lett. 76, 2176.

    Article  CAS  Google Scholar 

  85. Veith, M. Mathur, S. Shen, H. Lecerf, N. Hüfner, S. Jilavi, M. (2001) Chem. Mater. in print.

    Google Scholar 

  86. Jones A. C. (1997) Chem. Soc. Rev. 101.

    Google Scholar 

  87. King, B. H. Halloran, J. W. (1995) J. Am. Ceram. Soc. 78, 2141.

    Article  CAS  Google Scholar 

  88. Coles, M. P. Lugmair, C. G. Terry, K. W. Tilley, T. D. (2000) Chem. Mater. 12, 122.

    Article  CAS  Google Scholar 

  89. Hubert-Pfalzgraf, L. G. Guillon, H. (1998) Appl. Organomet. Chem. 12, 221.

    Article  CAS  Google Scholar 

  90. Narayanan, R. Laine, R. M. (1997) Appl. Organomet. Chem. 11, 919.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mathur, S. (2002). Thin Film Deposition By Sol-Gel and CVD Processing of Metal-Organic Precursors. In: Pauleau, Y. (eds) Chemical Physics of Thin Film Deposition Processes for Micro- and Nano-Technologies. NATO Science Series, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0353-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0353-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0525-1

  • Online ISBN: 978-94-010-0353-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics