Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 55))

  • 858 Accesses

Abstract

Liquid phase epitaxy (LPE) has been applied for growing mainly semiconductor materials [1, 2]. It may be required, when electrical and crystallographic quality of wafers which are cut from bulk crystals is not good enough for making active devices directly on wafers, to grow same materials as substrates but better quality on wafers (homoepitaxy). Epitaxial growth can be also applied for making stacked multi-layer structures of several layers for such as integrated circuits or solar cells. In order to combine more than two different materials heteroepitaxy can be performed. Much efforts are made recently, using LPE techniques, to grow crystalline semiconductor layers on cheap substrates, ceramics or glass, for aiming to fabricate solar cells with higher energy conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deitch, R.H. (1975) Molten Metal Solution Growth, chapter 11 in B.R. Pamplin (ed.), Crystal Growth, Pergamon, Oxford, pp. 427–496.

    Google Scholar 

  2. Giess E.A. and Ghez, R. (1975) Liquid Phase Epitaxy, chapter 2.6 in J.W. Matthews (ed.), Epitaxial Growth, Part A, Academic, New York, 1975, pp. 183–213.

    Google Scholar 

  3. Bauser, E. (1994) Atomic Mechanisms in Semiconductor Liquid Phase Epitaxy, in D.T.J. Hurle (ed.), Handbook of Crystal Growth, Vol. 3, Elsevier Sciences B. V., Amsterdam, pp. 879–940.

    Google Scholar 

  4. Bauser, E. (1996) Liquid Phase Epitaxy, in M. Scheffler and R. Zimmermann (eds), Proc. 23rd International Conference on the Physics of Semiconductors, Vol. 2, World Scientific, Singapore, pp. 1043–1050.

    Google Scholar 

  5. Long, S.I., Ballantyne, J.M., and Eastman, L.F. (1974) Steady-state LPE growth of GaAs, J. Cryst. Growth 26, 13–20.

    Article  CAS  Google Scholar 

  6. Konuma, M.(1996) Low temperature epitaxy of Si and SiGe by the novel centrifugal LPE technique, in Extended abstracts on the 1996 International Conference on Solid State Devices and Materials, Japan Soc. Appl. Phys., Tokyo, pp. 55–57.

    Google Scholar 

  7. Konuma, M., Silier, I., Gutjahr, A., Hansson, P.O., Cristiani, G., Czech, E., Bauser, E., and Banhart, F. (1996) Centrifugal techniques for solution growth of semiconductor layers, Appl. Phys. Lett. 63, 205–207.

    Article  Google Scholar 

  8. Burkman, D.C., Deal D., Grant, D.C., and Peterson, C.A. (1993) Aqueous Cleaning Processes in W. Kern (ed.), Handbook of Semiconductor Wafer Cleaning Technology, Noyes, Park Ridge, pp. 111–151.

    Google Scholar 

  9. Cady W.A. and Varadarajan, M. (1996) RCA Clean Replacement, J. Electrochem. Soc. 143, 2064–2067.

    Article  CAS  Google Scholar 

  10. Higashi, G.S., Becker, R.S. Chabal, Y.J., and Becker, A.J. (1991) Comparison of Si(111) surfaces prepared using aqueous solutions of NH4F versus HF, Appl. Phys. Lett. 58, 1656–1658.

    Article  CAS  Google Scholar 

  11. Yasaka, T., Kanda, K., Sawara, K., Miyazaki, S., and Hirose, M. (1991) Chemical stability of HF-treated Si(111) surfaces, Jap. J. Appl. Phys. 30, 3567–3569.

    Article  CAS  Google Scholar 

  12. Iyer, S.S., Arienzo, M., and de Fresart, E. (1990) Low temperature silicon cleaning via hydrogen passivation and conditions for epitaxy, Appl. Phys. Lett. 57, 893–895.

    Article  CAS  Google Scholar 

  13. Bender, H., Verhaverbeke, S., Caymax, M., Vatel, O., and Heyns, M.M. (1994) Surface reconstruction on hydrogen annealed (100) silicon, J. Appl. Phys. 75, 1207–1209.

    Article  CAS  Google Scholar 

  14. Morita, Y., Miki, K., and Tokumoto, H. (1995) Kinetics of hydrogen desorption on a Si(111) surface, Surf. Sci. 325, 21–32.

    Article  CAS  Google Scholar 

  15. Flowers, M.C., Jonathan, N.B.H., Liu, Y., and Morris, A. (1993) Temperature programmed desorption of molecular hydrogen from a Si(100)-2xl surface: Theory and experiment, J. Chem. Phys. 99, 7038–7048.

    Article  CAS  Google Scholar 

  16. Konuma, M., Silier, I., Gutjahr, A., Bauser, E., Banhart, F., Frey, H., and Nagel, N. (1995) Extremely low temperature silicon liquid phase epitaxy, Mat. Res. Soc. Symp. Proc. 386, 339–344.

    Article  CAS  Google Scholar 

  17. Alfons, C., Bermond, J.M., Heyraud, J.C., and Métois, J.J. (1992) The meandering of steps and terrace width distribution on clean Si (111), Surf. Sci. 262, 371–381.

    Article  Google Scholar 

  18. O*#x2019;Mahony, J.D., McGilp, J.F., Leibsle, F.M., Weightman, P., and Flipse, C.F. (1993) Control of terrace width and atomic step distribution on vicinal Si (111) surfaces by thermal processing, Semicond. Sci. Technol. 8,495–501.

    Article  Google Scholar 

  19. Oshiyama, A. (1995) Structures of steps and appearances of 311 facets on Si (100) surfaces, Phys. Rev. Lett, 74, 130–133.

    Article  CAS  Google Scholar 

  20. Laracuente, A. and Whitmen, L.J. (2001) Step structures and energies on monohydride-terminated vicinal Si (001) surfaces, Surf. Sci. 476, L247-L253.

    Google Scholar 

  21. Hibino, H. and Ogino, T. (1997) Substitution of In for Si adatoms and exchanges between In and Si adatoms on a Si (111)-7 × 7 surface, Phys. Rev. B 55, 7018–7022.

    Article  CAS  Google Scholar 

  22. Li, L, Wie, Y., and Tsong, I.S.T. (1994) Reconstruction, step-bunching and faceting of a vicinal Si (100) surface induced by indium adsorption, Surf. Sci. 304, 1–11.

    Article  CAS  Google Scholar 

  23. Bulavenko, S.Yu., Fedorchenko, M.I., Melnik, P.V., and Nakhodkin, M.G. (2000) Coadsorption of hydrogen and bismuth on the Si (111) 7×7 surface, Surf. Sci. 454-456, 213–217.

    Article  CAS  Google Scholar 

  24. Slezák, J., Mutombo, P., and Cháb, V. (2000) Temperature study of phase coexistence in the system Pb on a Si (111) surface, Surf Sci. 454-456, 584–590.

    Article  Google Scholar 

  25. Füller, T., Konuma, M., Zipprich, J., and Banhart, F. (1999) The critical thickness of silicon-germanium layers grown by liquid phase epitaxy, Appl. Phys. A69, 597–603.

    Google Scholar 

  26. Hsieh, J.J. (1974) Thickness and surface morphology of GaAs LPE layers grown by supercooling, step-cooling, equilibrium-cooling, and two-phase solution techniques, J. Cryst. Growth 27, 49–61.

    CAS  Google Scholar 

  27. Kuphal, E. (1991) Liquid phase epitaxy, Appl. Phys. A52, 380–409.

    CAS  Google Scholar 

  28. Konuma, M., Cristiani, G., Czech, E., and Silier, I. (1999) Liquid phase epitaxy of Si from Pb solutions, J. Cryst. Growth 198/199, 1045–1048.

    Article  CAS  Google Scholar 

  29. Farrow, R.F.C., Harbison, J.P., Peercy, P.S., Zangwill A., (eds.), Heteroepitaxy of Dissimilar Materials, MRS Symposium Proceedings Vol.221, MRS, Pittsburgh, 1991.

    Google Scholar 

  30. Cullis, A.G. (1996) Strain-induced modulations in the surface morphology of heteroepitaxial layers, MRS Bulletin, 21, 21–26.

    CAS  Google Scholar 

  31. Roland, C. (1996) Effects of stress on step energies and surface roughness, MRS Bulletin, 21, 27–30.

    CAS  Google Scholar 

  32. Roos, B. and Ernst, F. (1994) Thermal-stress-induced dislocations in GeSi/Si heterostructures, J. Cryst. Growth 137, 457–471.

    Article  CAS  Google Scholar 

  33. Konuma, M., Silier, I., Czech, E., and Bauser, E. (1994) Semiconductor liquid phase epitaxy for solar cell application, Solar Energ. Mat. Solar Cell. 34, 251–256.

    Article  CAS  Google Scholar 

  34. Weishart, H., Bauser, E., Konuma, M., and Queisser, H.-J. (1994) Monomolecular steps of ultra-low density on (100) grown faces on liquid phase epitaxial GaAs, J. Cryst. Growth 137, 335–346.

    Article  CAS  Google Scholar 

  35. Möhling, W., Weishart, H., and Bauser, E. (1993) Nature of dislocations promoting growth in liquid phase epitaxy of gallium arsenide, J. Cryst. Growth 130, 466–474.

    Article  Google Scholar 

  36. Bauser, E. and Strunk, H. (1982) Dislocations as growth step sources in solution growth and their influence on interface structures, Thin Solid Films 93, 185–194.

    Article  CAS  Google Scholar 

  37. Käss, D. and Strunk, H. (1981) Growth-promoting dissociated dislocations in solution-grown silicon, Thin Solid Films 81, L101–L104.

    Article  Google Scholar 

  38. People, R., and Bean, J.C. (1985) Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures, Appl. Phys. Lett. 47, 322–324.

    Article  CAS  Google Scholar 

  39. Hansson, P.O., Ernst, F. and Bauser, E. (1992) Two-dimensional growth of strained Ge0.85Si0.15 on Si (111) by liquid phase epitaxy, J. Appl. Phys. 72, 2083–2085.

    Article  CAS  Google Scholar 

  40. Sembian, A.M., Silier, I., Davies, K., Gutjahr, S., Lyutovich, K., Konuma, M., and Banhart, F. (1998) Surface morphology of LPE SiGe layers grown on (100) Si substrates, Mat. Res. Soc. Symp. Proc. 485, 19–24.

    Article  CAS  Google Scholar 

  41. Sembian, A.M., Banhart, F., Konuma, M., Weber, J., Babu, S.M., and Ramasamy, P. (2000) Influence of cooling rate on the dislocations and related luminescence in LPE SiGe layers grown on Si (100) substrates, Thin Solid Films 372, 1–5.

    Article  CAS  Google Scholar 

  42. Dorsch, W., Christiansen, S., Albrecht, M., Hansson, P.O., Bauser, E., and Strunk, H.P. (1995) Early growth stages of Ge0.85Si0.15 on Si (001) from Bi solution, Surf. Sci. 331-333, 896–901.

    Article  CAS  Google Scholar 

  43. Bergmann, R. (1991) Model for defect-free epitaxial lateral overgrowth of Si over SiO2 by liquid phase epitaxy, J. Cryst. Growth 110, 823–834.

    Article  CAS  Google Scholar 

  44. Banhart, F., Bergmann, R., Phillipp, F., and Bauser, E. (1991) Dislocation generation in silicon grown laterally over SiO2 by liquid phase epitaxy, Appl. Phys. A53, 317–323.

    CAS  Google Scholar 

  45. Nagel, N. (1993) Lösungswachstum von Siliziumschichten auf Siliziumdioxid und Charakterisierung der Schichten, Thesis, University of Stuttgart.

    Google Scholar 

  46. Köhler, R., Raidt, H., Banhart, F., Jenichen, B., Gutjahr, A., Konuma, M., Silier, I., and Bauser, E. (1996) Semiconductor epitaxial and nonepitaxial overgrowth from solutions, Mat. Res. Soc. Symp. Proc. 399, 189–194.

    Article  Google Scholar 

  47. Silier, I., Gutjahr, A., Nagel, N., Hansson, P.O., Czech, E., Konuma, M., Bauser, E., Banhart, F., Köhler, R., Raidt, E., and Jenichen, B. (1996) Solution growth of epitaxial semiconductor-on-insulator layers, J. Cryst.Growth 166, 727–730.

    Article  CAS  Google Scholar 

  48. Raidt, H., Höhler, R., Banhart, F., Jenichen, B., Gutjahr, A., Konuma, M., Silier, I., and Bauser, E. (1996) Adhesion in growth of defect-free silicon over silicon oxide, J. Appl. Phys. 80, 4101–4107.

    Article  CAS  Google Scholar 

  49. Subramanian, C.K. and Neudeck, G.W. (1992) Large area silicon on insulator by double-merged epitaxial lateral overgrowth, J. Vac. Sci. Technol. B10, 643–647.

    Google Scholar 

  50. Kitajima, H., Fujimoto, Y., Kasai, N., Ishitani, A., and Endo, N. (1989) Lattice defect in selective epitaxial silicon and laterally overgrown regions on SiO2, J. Cryst. Growth 98, 264–276.

    Article  CAS  Google Scholar 

  51. Banhart, F., Nagel, N., Phillipp, F., Czech, E., Silier, I., and Bauser, E. (1993) The coalescence of silicon layers grown over SiO2 by liquid phase epitaxy, I: Growth and coalescence of defect-free silicon layers, Appl. Phys. A57, 249–254.

    Google Scholar 

  52. Banhart, F., Nagel, N., Phillipp, F., Czech, E., Silier, I., and Bauser, E. (1993) The coalescence of silicon layers grown over SiO2 by liquid phase epitaxy, II: Strain and defect nucleation studies by transmission electron microscopy, Appl. Phys. A57, 441–448.

    CAS  Google Scholar 

  53. Trah, H.-P. (1990) Liquid phase epitaxy in the ternary system Si-Ge-Bi, J. Cryst. Growth 102, 175–182.

    Article  CAS  Google Scholar 

  54. Trah, H.-P. (1988) Flüssigphasen-Heteroepitaxie auf Silizium-Substraten, Thesis, University of Freiburg i. Br.

    Google Scholar 

  55. Hansson, P.O., Bergmann, R., and Bauser, E. (1991) Heteroepitaxial lateral overgrowth of GexSi 1-x over SiO2/Si structures by liquid phase epitaxy, J. Cryst. Grwoth 114, 573–580.

    Article  CAS  Google Scholar 

  56. Hansson, P.O., Gustafsson, A., Albrecht, M., Bergmann, R., Strunk, H.P., and Bauser, E. (1992) High quality GexSi1-x by heteroepitaxial lateral overgrowth, J. Cryst. Growth 121, 790–794.

    Article  CAS  Google Scholar 

  57. Banhart, F. and Gutjahr, A. (1996) Stress relaxation in SiGe layers on oxide-patterned Si substrates, J. Appl. Phys. 80, 6223–6228.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Konuma, M. (2002). Feature and Mechanisms of Layer Growth in Liquid Phase Epitaxy of Semiconductor Materials. In: Pauleau, Y. (eds) Chemical Physics of Thin Film Deposition Processes for Micro- and Nano-Technologies. NATO Science Series, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0353-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0353-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0525-1

  • Online ISBN: 978-94-010-0353-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics