Advertisement

Mass-Transport in an Austenitic Stainless Steel Under High-Flux, Low-Energy Nitrogen Ion Bombardment at Elevated Temperature

  • L. Pranevicius
  • C. Templier
  • J.-P. Riviere
  • S. Muzard
  • J. Dudonis
  • L. L. Pranevicius
  • D. Milcius
  • G. Abrasonis
Part of the NATO Science Series book series (NAII, volume 55)

Abstract

The kinetics of nitriding has been the focus of much research since the introduction of the process [1, 2, 3]. Due to unusually advantageous combination of properties the nitriding of an austenitic AISI 304 stainless steel is widely studied. It is shown that ion nitriding provided by ion beam/plasma techniques at elevated temperature (∼400°C) is a potential candidate to overcome the problem of enhancing surface hardness and wear resistance of an austenitic stainless steel without decreasing their corrosion resistance. Gas and liquid nitriding need temperatures between 500 and 600°C, which are detrimental to the corrosion resistance due to structural transformation of alloys.

Keywords

Austenitic Stainless Steel Distribution Profile Plasma Torch Nitrided Layer Surface Tension Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Williamson, D.L., Davis, J.A., Wilbur, P.J., Vajo, J.J., Wei, R., and Matosian, J.N. (1997) Relative roles of ion energy, ion flux, and sample temperature in low-energy nitrogen ion implantation of Fe-Cr-Ni stainless steel, Nucl. Instrum. Meth. Phys. Res. B 127–128, 930 (and references therein).CrossRefGoogle Scholar
  2. 2.
    Müller, W., Parascandola, S., Telbizova, T., Günzel, R., and Richter, E. (2001) Surface processes and diffusion mechanisms of ion nitriding of stainless steel and aluminium, Surf. Coat. Technol. 136, 73.CrossRefGoogle Scholar
  3. 3.
    Samandi, M., Shedden, B.A., Smith, D.I., Collins, G.A., Hutchings, R., and Tendys, J. (1993) Microstructure, corrosion and tribological behavior of plasma immersion ion-implanted austenitic stainless steel, Surf. Coat. Technol. 59, 261.CrossRefGoogle Scholar
  4. 4.
    Wei, R., Vajo, J.J., Matossian, J.N., Wilbur; P.J., Davis, J.A., Williamson, D. L., and Collins G.A. (1996) A comparative study of beam ion implantation, plasma ion implantation and nitriding of AISI 304 stainless steel, Surf Coat. Technol. 83, 235.CrossRefGoogle Scholar
  5. 5.
    Brokman, A., Dothan, F., and Tuler, F. (1979) STM observation of surface vacancies created by ion impact, Mater. Sci. Eng. 40, 261.CrossRefGoogle Scholar
  6. 6.
    Brokman, A., and Tuler, F. (1981) Growth of nitrided layers of Fe-Cr alloys, J. Appl. Phys. 52, 468.CrossRefGoogle Scholar
  7. 7.
    Szasz, A., Fabian, A. J., Hendry, A., and Szaszne Z. (1989) A study of low energy high dose nitrogen implantation in iron — Effect of ion energy and current density, J. Appl. Phys. 66, 5598.CrossRefGoogle Scholar
  8. 8.
    Wilbur, P.J., Davis, J. A., Wei, R., Vajo, J. J. and Williamson, D. L. (1996) High current density, low energy, ion implantation of AISI-M2 tool steel for tribological applicatrions, Surf. Coat. Technol. 83, 250.CrossRefGoogle Scholar
  9. 9.
    Williamson, D. L., Ivanov, I., Wei, R., and Wilbur, P. J. (1992) Role of chromium in high-dose, high-rate, elevated temperature nitrogen implantation of austenitic stainless steels, Mater. Res. Soc. Symp. Proc. 235, 473.CrossRefGoogle Scholar
  10. 10.
    Parascandola, S., Gunzel, R., Grotzchel, R., Richter, E., and Moller, W. (1998) Analysis of deuterium induced nuclear reactions giving criteria for the formation process of expanded austenite, Nucl. Instrum. Meth. B 136–138, 1281.CrossRefGoogle Scholar
  11. 11.
    Parascondola, S., Moller, W., and Williamson, D. L. (2000) The nitrogen transport in austenitic stainless steel at moderate temperatures, J. Appl. Phys. 76, 2194.Google Scholar
  12. 12.
    Pranevicius, L., Templier, C., Rivière, J.-P., Meheust, P., Pranevicius, L.L., and Abrasonis, G. (2001) On the mechanism of ion nitriding of an austenitic stainless steel, Surf. Coat. Technol. 135, 205.CrossRefGoogle Scholar
  13. 13.
    Mullins, W. and Sekerka, R. F. (1964) Theory of crystal growth from the vapor, J. Appl. Phys. 35, 444.CrossRefGoogle Scholar
  14. 14.
    Rong-Fu Xiao, Iwan, J., Alexander, D., and Rosenberger, F. (1991) Atomistic aspects of diffusion and growth on the Si and Ge surfaces, Phys. Rev. A 43, 2947.Google Scholar
  15. 15.
    Somorjai, G. A. (1994) Introduction to Surface Chemistry and Catalysis, John Willey and Sons, New York.Google Scholar
  16. 16.
    Somorjai, G. A. (1998) From surface materials to surface technologies, MRS Bulletin 23, 11.Google Scholar
  17. 17.
    Randall, N. X., Renevier, N., Michel, H., and Collignon, P. (1997) Measurement of hardness as a function of depth in nitroded 316 L stainless steel, Vacuum 48, 849.CrossRefGoogle Scholar
  18. 18.
    Anwand, W., Parascandola, S., Richter, E., Brauer, G., Coleman, P.G., and Moler, W. (1998) Slow positron spectroscopy of high current ion nitrided austenitic stainless steel, Nucl. Instr. Meth. B 127/128, 930.Google Scholar
  19. 19.
    Rossnagel, S. M., and Robinson, R. S. (1982) Concentration microprofiles in iron silicides induced by low energy ion bombardment, J. Vac. Sci. Technol. 20, 506.CrossRefGoogle Scholar
  20. 20.
    Sampath, W.S., Wei, R., and Wilbur, P.J. (1987) Ultrahigh current density ion implantation, Journal of Metals, April 17.Google Scholar
  21. 21.
    Meheust, P. (2000) Doctoral Thesis Implantation ionique d’azote a basse énergie et flux eleve dans un acier austenitic 304 L, Université d’ OrléansGoogle Scholar
  22. 22.
    Porath, T., Millo, O., and Sersten, J. I. (1996) Treatment of the surface layer of steel with high energy plasma pulses, J. Vac. Sci. Technol. B 14(1), 30.CrossRefGoogle Scholar
  23. 23.
    Pranevicius, L.L., Valatkevicius, P., Valincius, V., Templier, G, Riviere, J.-P., and Pranevicius L. (2001) Nitriding of an austenitic stainless steel in plasma torch at atmospheric pressure, Surf. Coat. Technol. (submitted for publication).Google Scholar
  24. 24.
    Dimitrov, O., and Dimitrov, C. (1982) Defect recovery in irradiated high-purity austenitic Fe-Cr-Ni alloys: activation energies and dependence on initial defect concentration, J. Nucl. Instrum. Materials 105, 39.CrossRefGoogle Scholar
  25. 25.
    Camps, E., Muhl, S., Romero, S., and Garcia, J. L. (1998) Microwave plasma nitrided austenitic AISI-304 stainless steel, Surf. Coat. Technol. 106, 121.CrossRefGoogle Scholar
  26. 26.
    Landry, F., Lieb, K.-P., and Shaaf, P. (2000) Ion nitriding of aluminium — experimental investigation of the thermal transport, Nucl. Instr. Meth. B 161–163, 609.CrossRefGoogle Scholar
  27. 27.
    Kaufman, H. R., and Robinson, R. S. (1979) Heat spike effects on ion beam mixing, J. Vac. Sci. Technol. 16, 175.CrossRefGoogle Scholar
  28. 28.
    G. Carter, (1986) in G. Kiriakidis, G. Carter, J. L. Whitton (eds.), NATO ASI Series Erosion and Growth of Solids Stimulated by Atom and Ion Beams”, Series E: Applied Sciences 112, 70.Google Scholar
  29. 29.
    Carter, G., Colligon, J. S., and Nobes, M. J. (1976) in B. Navinsek, I. J. Stefan (eds.), Proc. 8th Symp. on Physics of Ionized Gases, Ljubljana.Google Scholar
  30. 30.
    Landau, L.D., and Lifshitz, E.M. (1967) Theory of Elasticity, Nauka, Moscow.Google Scholar
  31. 31.
    Baranowska, J., and Wysiecki, M. (2000) Influence of surface pretreatment on case formation during gaseous nitriding, Surf. Coat. Technol. 125, 30.CrossRefGoogle Scholar
  32. 32.
    Uglov, V.V., Rusalsky, D.P., Khodasevich, V.V., Kholmetskii, A.L., Wei, R., Vajo, J.J., Rumyanceva, I.N., and Wilbur, P.J. (1998) Modified layer formation by means of high current density nitrogen and boron implantation, Surf. Coat. Technol. 103–104, 317.CrossRefGoogle Scholar
  33. 33.
    Pranevicius, L., Badawi, K.-F., Durand, N., Delafond, J., and Templier, C. (1995) Surface roughness resulting from ion irradiation of multilayered materials, Vacuum 46, 77.CrossRefGoogle Scholar
  34. 34.
    Pranevicius, L. (1993) D. Satas (ed.), Coating Technology: Ion Beam Deposition, Satas and Associates, Warwick, USA.Google Scholar
  35. 35.
    In (1981) R. Behrisch (ed.) Sputtering by Particle Bombardment, Vol. 1, Berlin.Google Scholar
  36. 36.
    Fink-Jensen, P. (1962) Paint flow and pigment dispersion, Farbe Latck 68, 155.Google Scholar
  37. 37.
    Xie, Q., Madhukar, A., Chen, P., and Kobayshi, P. (1995) Nanocomposite coatings, Phys. Rev. Lett. 75, 2542.CrossRefGoogle Scholar
  38. 38.
    Pranevicius, L., Templier, C., Delafond, J., and Muzard, S. (1995) Simulation of interface effects during simultaneous deposition anf ion irradiation, Surf. Coat. Technol. 72, 51.CrossRefGoogle Scholar
  39. 39.
    Somorjai, G.A., Chen, P. (2001) Surface materials: the frontier of solid state chemistry, Solid State Ionics 141–142, 3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • L. Pranevicius
    • 1
  • C. Templier
    • 2
  • J.-P. Riviere
    • 2
  • S. Muzard
    • 2
  • J. Dudonis
    • 3
  • L. L. Pranevicius
    • 1
    • 4
  • D. Milcius
    • 4
  • G. Abrasonis
    • 1
  1. 1.KaunasLithuania
  2. 2.Laboratoire de Métallurgie PhysiqueUniversité de PoitiersFuturoscope Chasseneuil CedexFrance
  3. 3.Physics Department Kaunas University of TechnologyKaunasLithuania
  4. 4.Plasma Processing Laboratory, Lithuanian Energy InstituteKaunasLithuania

Personalised recommendations