Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 55))

Abstract

Today’s ICs technology is based on MOSFET whose dimensions are shrunken as integration increases. It is wellknown that this elementary device in its present configuration (a channel and a single gate) could not be used any more for channel lengths lower than about 30 nm [1]. In fact, beyond this limit, two main problems will appear due to a small size effect. The first one is the dopant number (near unity) fluctuation in the channel from one device to another which will affect the device characteristics reliability. The second problem is the appearance of extra physical phenomenon such as ballistic transport or tunnel current flow through the oxide gate. Moreover, if the circuit integration increases but if the commutation still needs to exchange a great number of electrons (presently roughly 104 electrons for a MOSFET), the energy dissipated in the interconnection layout will increase drastically. Consequently, in order to be able to keep on integration beyond this size limit, MOSFET configuration has to be modified [2] or new components, based on new physical phenomena and involving a lower number of electrons for switching must be designed to replace MOSFET in ICs. Single Electron Transistors (SET), whose principle is based on Coulomb blockade effect [3], are now considered as ideal devices to replace FET in memories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taur, Y., Buchanan, D. A., Chen, W., Frank, D. J., Ismail, K. E., Lo, S-H., Sai-Halasz, G.A., Viswanthan, R. G., Wann, H.-J. C., Wind, S. J. and Wong, H.S. (1997), “CMOS Scaling into the Nanometer Regime”, in Proc. IEEE 85, 486–504.

    Article  Google Scholar 

  2. Pikus, F. G., Likharev, K. K. (1997), “Nanoscale Field-Effect Transistor: an Ultimate Size Analysis”, Appl. Phys. Lett. 71(25), 3661–3663.

    Article  CAS  Google Scholar 

  3. Grabert, H. and Dévoret, M. H. (1992), Single Charge Tunneling, Nato ASI Series vol.294, Plenum Press, 1–19.

    Google Scholar 

  4. Averin, D. D. and Likharev, K. K. (1991), Mesoscopic Phenomena in Solids, (B. Altshuler ed.), Elsevier, Amsterdam.

    Google Scholar 

  5. Vieu, C., Carcenac, F., Pépin, A., Chen, Y., Mejias, M., Lebib, A., Manin-Ferlazzo, L., Couraud, L. and Launois, H. (2000), “Electron Beam Lithography: Resolution Limits and Applications”, Appl. Surf. Sci. 164, 111–117.

    Article  CAS  Google Scholar 

  6. Thibaudau, F., Roche, J.R. and Salvan, F. (1994), “Nanometer Scale Lithography on Si by Decomposition of Ferrocene Molecules Using a Scanning Tunnelling Microscope”, Appl. Phys. Lett. 64(4), 523–525.

    Article  CAS  Google Scholar 

  7. Rubel, S., Wang, X.-D. and de Lozanne, A. (1995), “Nanofabrication with a Scanning Tunnelling Microscope Using Chemical Vapor Deposition”, J. Vac. Sci. Technol. B13(3), 1332–1336.

    Google Scholar 

  8. Kent, A. D., Von Molnar, S., Gider, S. and Awschalom, D.D. (1994), “Properties and Measurement of Scanning Tunnelling Microscope Fabricated Ferromagnetic Particle Arrays”, J. Appl. Phys. 76(10), 6656–6660.

    Article  CAS  Google Scholar 

  9. Ehrichs, E.E., Yoon, S. and de Lozanne, A. (1988), “Direct Writing of 10 nm Features with the Scanning Tunnelling Microscope”, Appl. Phys. Lett. 53(23), 2287–2289.

    Article  Google Scholar 

  10. Yau, S.-T., Saltz, D., Wriekat, A. and Nayfeh, M. H. (1991), “Nanofabrication with a Scanning Tunnelling Microscope”, J. Appl. Phys. 69(5), 2970–2974.

    Article  CAS  Google Scholar 

  11. Ehrichs, E.E., Smith, W.F. and de Lozanne, A. (1991) “A Scanning Tunneling Microscope/Scanning Electron Microscope System for the Fabrication of Nanostructures”, J. Vac. Sci. Technol. B9(2), 1380–1383.

    Google Scholar 

  12. Pai, W.W., Zhang, J. and Weidenken, J.F. (1997), “Magnetic Nanostructures Fabricated by Scanning Tunnelling Microscope-Assisted Chemical Vapor Deposition”, J. Vac. Sci. Technol. B15(4), 785–787.

    Google Scholar 

  13. F.Marchi, F., Tonneau, D., Dallaporta, H., Safarov, V., Bouchiat, V., Doppelt, P., Even, R. and Beitone, L. (2000), “Direct Patterning of Noble Metal Nanostructures with a Scanning Tunnelling Microscope”, J. Vac. Sci. Technol. B18(3), 1171–1176.

    Google Scholar 

  14. Marchi, F., Tonneau, D. Dallaporta, H., Pierrisnard, R., Bouchiat, V., Safarov, V., Doppelt, P. and Even, R. (2000), “Nanometer Scale Patterning by STM-Assisted CVD”, Microelectronic Engineering 50(1–4), 59–65.

    Article  CAS  Google Scholar 

  15. Mamin, H. J., Guethner, P. H. and Rugar, D. (1990), “Atomic Emission from a Gold Scanning Tunnelling Microscope Tip”, Phys. Rev. Lett. 65(10), 2418–2421.

    Article  CAS  Google Scholar 

  16. Huang, D. H., Nakayama, T. and Aono, M. (1998), “Platinum Nanodot Formation by Atomic Point Contact with a Scanning Tunneling Microscope Platinum Tip”, Appl. Phys. Lett. 73(23), 3360–3362.

    Article  CAS  Google Scholar 

  17. Dagata, J. A., Schneir, J., Harary, H. H., Evans, C. J., Postek, M.T. and Bennett, J. (1990), “Modification of Hydrogen-Passivated Silicon by a Scanning Tunneling Microscope”, Appl. Phys. Lett. 56(20) 2001–2003.

    Article  CAS  Google Scholar 

  18. Snow, E. S., Campbell, P. M. and McMarr, P. J. (1993), “Fabrication of Silicon Nanostructures with a Scanning Tunneling Microscope”, Appl. Phys. Lett. 63(6), 749–751.

    Article  CAS  Google Scholar 

  19. Sugimura, H., Yamamoto, T., Nakagiri, N., Miyashita, M. and Onuki, T. (1994), “Maskless Patterning of Silicon Surface based on Scanning Tunneling Microscope Tip-Induced Anodization and Chemical Etching”, Appl. Phys. Lett. 65(12), 1569–1571.

    Article  CAS  Google Scholar 

  20. Gordon, A. E., Fayfield, R. T., Litfin, D. D. and Higman, T. K. (1995), “Mechanisms of Surface Anodization Produced by Scanning Probe Microscopes”, J. Vac. Sci. Technol. B13(6), 2805–2808.

    Google Scholar 

  21. Shen, T. C., Wang, C., Abeln, G. C., Tucker, J. R., Lyding, J. W., Avouris, Ph. and Walkup, R. E. (1995), “Atomic-Scale Desorption Through Electronic and Vibrational Excitation Mechanisms”, Science, 128, 1590–1592.

    Article  Google Scholar 

  22. Campbell, P. M., Snow, E. S. and McMan, P. J. (1995), “Fabrication of Nanometer-Scale Side-Gated Silicon Field Effect Transistors with an Atomic Force Microscope”, Appl. Phys. Lett. 66(11), 1388–1390.

    Article  CAS  Google Scholar 

  23. Stievenard, D., Fontaine, P. A. and Dubois, E. (1997), “Nanooxidation using a Scanning Probe Microscope: an Analytical Model Based on Field Induced Oxidation”, Appl. Phys. Lett. 70(24), 3272–3274.

    Article  CAS  Google Scholar 

  24. Konsek, S. L, Coope, R. J. N., Pearsall, T. P and Tiedje, T. (1997), “Selective Surface Modifications with a Scanning Tunnelling Microscope”, Appl. Phys. Lett. 70(14), 1846–1848.

    Article  CAS  Google Scholar 

  25. Avouris, Ph., Hertel, T. and Martel, R. (1997), “Atomic Force Microscope Tip-Induced Oxidation of Silicon: Kinetics, Mechanism and Nanofabrication”, Appl. Phys. Lett. 71(2) 285–287.

    Article  CAS  Google Scholar 

  26. Dagata, J., Inoue, T., Itoh, J. and Yokoyama, H. (1998), “Understanding Scanned Probe Oxidation of Silicon”, Appl. Phys. Lett. 73(2), 271–273.

    Article  CAS  Google Scholar 

  27. Perez-Murano, F., Birkelund, K., Morimoto, K. and Dagata, J. (1999), “Voltage Modulation Scanned Probe Oxidation”, Appl. Phys. Lett. 75(2), 199–201.

    Article  CAS  Google Scholar 

  28. Legrand, B. and Stievenard, D. (1999), “Nanooxidation of Silicon with an Atomic Force Microscope: a Pulsed Voltage Technique”, Appl. Phys. Lett. 74(26), 4049–4051.

    Article  CAS  Google Scholar 

  29. Garcia, R., Calleja, M. and Rohrer, H. (1999), “Patterning of Silicon Surfaces with non-contact Atomic Force Microscopy: Field-Induced Formation of Nanometer-size Water Bridges”, J. Appl. Phys. 86(4), 1898–1903.

    Article  CAS  Google Scholar 

  30. Dubois, E. and Bubendorff, J. L. (2000), “Kinetics of Scanned Probe Oxidation: Space-Charge Limited Growth”, J. Appl. Phys. 87(11), 8148–8154.

    Article  CAS  Google Scholar 

  31. Snow, E. S., Jernigan, G. G. and Campbell, P.M. (2000), “The Kinetics and Mechanism of Scanned Probe Oxidation of Si”, Appl. Phys. Lett. 76(13), 1782–1784.

    Article  CAS  Google Scholar 

  32. Legrand, B. and Stievenard, D. (2000), “Atomic Force Microscope Tip-Surface Behavior under Continuous Bias or Pulsed Voltages in Noncontact Mode”, Appl. Phys. Lett. 76(8), 1018–1020.

    Article  CAS  Google Scholar 

  33. Dagata, J., Perez-Murano, F., Abadal, G., Morimoto, K., Inoue, T., Itoh, J. and Yokoyama, H. (2000), “Predictive Model for Scanned Probe Oxidation Kinetics”, Appl. Phys. Lett. 76(19), 2710–2712.

    Article  CAS  Google Scholar 

  34. Marchi, F., Bouchiat, V., Dallaporta, H., Safarov, V., Tonneau, D. and Doppelt, P. (1998), “Growth of Silicon Oxide on Hydrogenated Silicon During Lithography with an Atomic Force Microscope”, J. Vac. Sci. Technol. B16(6), 2952–2956.

    Google Scholar 

  35. Dobisz, E. A. and Marrian, C. R. K. (1991) “Sub-30 nm lithography in a Negative Electron Beam Resist with a Vacuum Scanning Tunneling Microscope”, Appl. Phys. Lett. 58(22), 2526–2528.

    Article  CAS  Google Scholar 

  36. Szkutnik, P. D., Piednoir, A., Ronda, A., Marchi, F., Tonneau, D., Dallaporta, H. and Hanbücken, M. (2000), “STM Studies: Spatial Resolution Limits to Fit Observations in Nanotechnology”, Appl. Surf. Sci. 164, 169–174.

    Article  CAS  Google Scholar 

  37. Libioulle, L., Houbion, Y., Gilles, J.M. (1995), “Very Sharp Platinum Tips for Scanning Tunnelling Microscopy”, Rev. Sci. Instrum. 66(1), 97–100.

    Article  CAS  Google Scholar 

  38. Marchi, F., Tonneau, D., Pierrisnard, R., Bouchiat, V., Safarov, V., Dallaporta, H., Doppelt, P. and Even, R (1999), “Deposition of Nanoscale Rhodium Dots by STM Assisted CVD”, Journal de Physique IV(9), 733–739.

    Google Scholar 

  39. Bonnail, N., Tonneau, D., Dallaporta, H., Juan, A., Capolino, G.-A. and Bernard, F. (2000), “Dynamic Response of a Piezoelectric Actuator at Low Excitation Level in the Nanometer Range”, in Proc. of the ICEM2000 Conference, Espoo (Finlande), August 2000, Vol. 3, 1338–1342, ISBN 951-22-5097-7.

    Google Scholar 

  40. Bonnail, N., Tonneau, D., Dallaporta, and Capolino, G.-A. (2000), “Piezoelectric Actuator Characterization for Elongation at Nanometer Scale”, in Proc. of the IEEE-IAS Annual Meeting, Rome Italy, 8–12 October 2000, vol. 1, 293–298, ISBN 0-7803-6402-3.

    Google Scholar 

  41. See for example Prewett P. D. and Mair G. L. R. (1991), Focused Ion Beams from Liquid Metal Ion sources, Research Studies Press ltd, p 45–49 and references therein.

    Google Scholar 

  42. Adams, D.P., Mayer, T. M. and Swartzentruber (1996), “Selective Area Growth of Metal Nanostructures”, Appl. Phys. Lett. 68(16), 2210–2212.

    Article  CAS  Google Scholar 

  43. Abeln, G. C., Hersam, M. C., Thompson, D. S., Hwang, S.-T., Choi, H., Moore, J. S. and Lyding, J. W. (1998), “Approaches to Nanofabriaction on Si (100) Surfaces: Selective Area Chemical Vapor Deposition of Metals and Selective Chemisorption of Organic Molecules”, J. Vac. Sci. Technol. B16(6), 3874–3878.

    Google Scholar 

  44. Mizutani, W., Ohi, A., Motomatsu, M. and Tokumoto, H. (1995), “Field Evaporation of Gold by Scanning Tunneling Microscopy”, Appl. Surf. Sci. 87/88, 398–404.

    Article  CAS  Google Scholar 

  45. Shklyaev, A. A., Shibata, M. and Ichikawa, M. (1999), “Formation of Three Dimensional Si Islands on Si(111) with a Scanning Tunnelling Microscope”, Appl. Phys. Lett. 74(15), 2140–2142.

    Article  CAS  Google Scholar 

  46. Uchida, H., Huang, D., Grey, F. and Aono, M. (1993) “Site-Specific Measurement of Adatom Binding Energy Differences by Atom Extraction with the STM”, Phys. Rev. Lett. 70(13), 2040–2043.

    Article  CAS  Google Scholar 

  47. Day, H. C. and Allee, D. R. (1993) “Selective Area Oxidation of Silicon with a Scanning Force Microscope”, Appl. Phys. Lett. 62(21), 2691–2693.

    Article  CAS  Google Scholar 

  48. for technical information, see for example http://www.soitech.com.

  49. Kern, W. (1993) Handbook of Semiconductor Wafer Cleaning Technology, Noyes Publications, Park Ridge, New-Jersay, USA.

    Google Scholar 

  50. Chabal, Y. J., Higashi, G. S., Raghavachari, K. and Burrows, V. A. (1989) “Infrared Spectroscopy of Si(111) and Si(100) Surfaces after HF Treatment: Hydogen Termination and Surface Morphology”, J. Vac. Sci. Technol. A7(3), 2104–2109.

    Google Scholar 

  51. Timoshenko, V. Y., Dittrich, Th., Koch, F., Kamenev B.V., and Rappich, J. (2000) “Annihilation of nonradiative Defects on Hydrogenated Silicon Surfaces under Pulsed-laser Irradiation”, Appl. Phys. Lett. 77(19), 3006–3008.

    Article  CAS  Google Scholar 

  52. Higashi, G. S., Chabal, Y. J., Trucks, G. W. and Raghavachari, K. (1990) “Ideal Hydrogen Termination of the Si(111) Surface”, Appl. Phys. Lett. 56(7), 656–658.

    Article  CAS  Google Scholar 

  53. Teuschler, T., Mahr, K., Miyazaki, S., Hundhausen, M. and Ley, L. (1995) “Nanometer-scale Field-induced Oxidation of Si(111):H by a Conducting-probe Scanning Force Microscope: Doping Dependence and Kinetics”, Appl. Phys. Lett. 67(21), 3144–3146.

    Article  CAS  Google Scholar 

  54. Snow, E. S. and Campbell, P. M. (1994) “Fabrication of Si Nanostructures with an Atomic Force Microscope”, Appl. Phys. Lett. 64(15), 1932–1934.

    Article  CAS  Google Scholar 

  55. Garcia, R., Calleja, M. and Rerez-Murano, F. (1998) “Local Oxidation of Silicon Surfaces by Dynamic Force Microscopy: Nanofabrication and Water Bridge Formation”, Appl. Phys. Lett. 72(18), 2295–2297.

    Article  CAS  Google Scholar 

  56. H. Sugimura, T. Uchida, N. Kitamura, H. Masuhara (1994) “Scanning Tunneling Microscope Tip-induced Anodization for Nanofabrication of Titanium“, J. Phys. Chem. 98, 4352–4357 (1994).

    Article  CAS  Google Scholar 

  57. Pyle, J. L., Ruskell, T. G., Workman, R. K., Yao, X. and Sarid, D. (1997) “Growth of Silicon Nitride by Scanned Probe Lithography”, J. Vac. Sei. Technol. B15, 38.

    Article  Google Scholar 

  58. Cabrera, N., and Mott, N. F. (1948) “Theory of the Oxidation of Metals”, Rep. Prog. Phys. 12, 163–184.

    Article  Google Scholar 

  59. Yasutake, M., Ejiri, Y. Y., and Hattori, T. (1993) “Modification of Silicon Surface Using Atomic Force Microscope with Conducting Probe”, Jpn. J. Appl. Phys. 32, L1021–L1023.

    Article  CAS  Google Scholar 

  60. Sugimura, H., Kitamura, N. and Masuhara, H. (1994) “Modification of n-Si(l00) Surface by Scanning Tunneling Microsocpe Tip-Induced Anodization under Nitrogen Atmosphere”, Jpn. J. Appl. Phys. 133, L1021.

    Google Scholar 

  61. Dagata, J. A., Inoue, T., Itoh, J., Matsumoto, K. and Yokoyama, H. (1998) “Role of Space Charge in Scanned Probe Oxidation”, J. Appl. Phys. 84(12), 6891–6900.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tonneau, D., Clement, N., Houel, A., Bonnail, N., Dallaporta, H., Safarov, V. (2002). Proximal Probe Induced Chemical Processing for Nanodevice Elaboration. In: Pauleau, Y. (eds) Chemical Physics of Thin Film Deposition Processes for Micro- and Nano-Technologies. NATO Science Series, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0353-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0353-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0525-1

  • Online ISBN: 978-94-010-0353-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics