Advertisement

Porphyrins and Phthalocyanines—Correlation of Molecular Structure and Photoactivity

  • D. Wróbel
  • A. Boguta
Part of the NATO Science Series book series (NAII, volume 59)

Abstract

Porphyrins and phthalocyanines are organic dyes which can be used as highly fluorescent species in laser technology [1], in photography [1], as radiation power indicators [1], as photosensitizers in photodynamic therapy of cancerous disease [2, 3]. In some papers it has been shown that porphyrins and phthalocyanines are very attractive candidates for application in photovoltaics and thus can serve as photoconverters of light to electric energy [4, 5, 6, 7].

Keywords

Nematic Liquid Crystal Photoelectrochemical Cell Zinc Phthalocyanine Molecular Skeleton Organic Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leznoff, C.C., and Lever, A.B.P. (1996) Phthalocyanines. Properties and applications, VCH Publishers Inc., New York.Google Scholar
  2. 2.
    Moan, J. (1986) Porphyrin photosensitization and phototherapy, Photochem. Photobiol. 43, 681–690.CrossRefGoogle Scholar
  3. 3.
    Rosenthal, I. (1991) Phthalocyanines as photodynamic sensitizers, Photochem. Photobiol. 53, 859–870.Google Scholar
  4. 4.
    Jensen, H., Kakkassery, J.J., Nagatani, H., Fermin, D.J., and Girault, H.H. (2000) Photoinduced electron transfer at liquid/liquid interfaces, J. Am. Chem. Soc. 122, 10943–10948.CrossRefGoogle Scholar
  5. 5.
    Garcia, C.G., Iha, N.Y.M., Argazzi, R., and Bignozzi, C.A. (1998) 4-phenylpyridine as ancillary ligand in ruthenium (II) polypyridyl complexes for sensitization of n—type TiO2 electrodes, J. Photochem. Photobiol. A: Chem. 114, 239–242.CrossRefGoogle Scholar
  6. 6.
    Wróbel, D., Lukasiewicz, J., Goc, J., and Waszkowiak, A., Ion, R.M. (2000) Photocurrent generation in an electrochemical cell with substituted metalloporphyrins, J. Mol. Structure 555, 407–416.CrossRefGoogle Scholar
  7. 7.
    Wróbel, D., Boguta, A., and Ion, R.M. (2000) Spectroscopic and photoelectric studies of phthalocyanines in polyvinyl alcohol for application in solar energy conversion, Int. J. Photoenergy 2, 87–96.CrossRefGoogle Scholar
  8. 8.
    Wróbel, D., Goc, J., and Ion, R.M. (1998) Photovoltaic and spectral properties of tetraphenyloporphyrin and metallotetraphenyloporphyrin dyes, J. Mol. Structure 450, 239–246.CrossRefGoogle Scholar
  9. 9.
    Hoffmann, T.J., and Wróbel, D. (1998) Photoinduced electron transport process in electrochemical cell. I. Phenomenological description, J. Mol. Structure 450, 145–151.CrossRefGoogle Scholar
  10. 10.
    Govindjee (1975) Bioenergetics of photosynthesis, Academic Press, New YorkGoogle Scholar
  11. 11.
    Wakao, N., Yokoi, N., Isoyama, N., Hirashi, A., Shimada, K., Kobayashi, M., Kise, H., Iwaki, M., Itoh, S., Takaichi, S., Sakurai, Y. (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum, Plant Cell Physiol. 37, 889–893.CrossRefGoogle Scholar
  12. 12.
    Wróbel, D., Boguta, A., and Ion, R.M. (2001) Photovoltaic effects in substituted metal-free and metallic sulfophthalocyanines in the photoelectrochemical cell, J. Mol. Structure 595, 127–138.CrossRefGoogle Scholar
  13. 13.
    Wróbel, D., and Boguta, A.(2001) Study of the influence of substituents on spectroscopic and photoelectric properties of zinc phthalocyanines, J. Photochem. Photobiol A: Chem., (submitted).Google Scholar
  14. 14.
    Wróbel, D., Lukasiewicz, J., and Manikowski, H. (2001) Fluorescence quenching and microwave spectroscopy of metallic porphyrins in the presence of electron acceptor, J. Photochem. Photobiol. A: Chem., (submitted).Google Scholar
  15. 15.
    Naser, N.S., Planner, A., and Frackowiak, D. (1997) Photoelectrochemical cell with dye molecules oriented in nematic liquid crystal, Acta Phys. Polon. A 92, 535–542.Google Scholar
  16. 16.
    Wrobel, D., Boguta, A., and Ion, R.M. (2001) Mixtures of synthetic organic dyes in a photoelectrochemical cell, J. Photochem. Photobiol. A: Chem. 138, 7–22.CrossRefGoogle Scholar
  17. 17.
    Rueckmann, I., Zeug, A., Herter, R.,and Roeder, B. (1997) On the influence of higher excited states on the ISC quantum yield of octa-a-alkyloxy-substituted Zn phthalocyanine molecules studied by nonlinear absorption, Photochem. Photobiol. 66, 576–584.CrossRefGoogle Scholar
  18. 18.
    Frąckowiak, D., Planner, A., Waszkowiak, A., Boguta, A., Ion, R.M., and Wiktorowicz, K. (2001) Yield of intersystem (singlet—triplet) crossing in phthalocyanines evaluated on the basis of a time in resolved photothermal method, J. Photochem. Photobiol. A: Chem., 141, 101–108.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • D. Wróbel
    • 1
  • A. Boguta
    • 1
  1. 1.Faculty of Technical PhysicsPoznan University of TechnologyPoznańPoland

Personalised recommendations