Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 59))

Abstract

Atoms may bind together according to the quantal structure of their single-electron energy shells. Electrons in the valence upper shells participate in the chemical bond, leaving behind a background of positive ions. The hole density of the ionic background is given, in its most general pair-wise form, by

$$ \rho (r) = \sum\limits_{ia;jb} {(\sum\limits_s {\beta _s^2 c_{ia}^{s*} c_{jb}^s } )\chi _{ia}^* (r)\chi _{jb} (r),} $$
((1))

where χ ia (r) = χ a (r - Ri is the a-th atomic-like orbital of the i-th ion placed at R i , c s ia are the coefficients of the s-th linear combination of atomic-like orbitals, and β s is the content of the chemical-bond orbital Φ s in the molecular-like orbital ψ s ; ψ s = α s ϕ s + β s Φ s , ϕ s = ∑ ia c s ia χ ia , α 2 s + β 2 s = 1. Averaging out the c s ia -coefficient in (1), and in virtue of the orthogonality of the eTa-matrix, one gets the ionic density

$$ \rho (r) = \beta ^2 \sum\limits_{ia} {\left| {\chi _{ia} \left( r \right)} \right|^2 ;} $$
((2))

hence, the total number of electronic holes of the ionic background is given by

$$ \int {dr \cdot \rho (r)} = \beta ^2 \sum\limits_i {z_i ,} $$
((3))

where z i is the nominal valence of the i-th atom. One can see that each ion participate in the chemical bond with an effective valence

$$ z_i^* = \beta ^2 z_i , $$
((4))

smaller than the nominal valence z i ; and the same is true for each valence atomic-like orbital ia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pople, J.A. (1998) Quantum chemical models, Revs. Mod. Phys. 71, 1267–1274.

    Article  Google Scholar 

  2. Apostol, M. (2000) Effective hamiltonian for molecular binding, J. Theor.Phys. 55, 1–10.

    Google Scholar 

  3. Schwinger, J. (1981) Thomas-Fermi model: The second correction, Phys. Rev A24, 2353–2361.

    Google Scholar 

  4. Cune, L.C. and Apostol, M. (1999) On the atomic binding energy in the Thomas-Fermi model, J. Theor. Phys. 45, 1–5.

    Google Scholar 

  5. Cune, L. C and Apostol, M. (2000) Ground-state energy and geometric magic num-bers for homo-atomic metallic clusters, Phys. Lett 273A, 117–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cune, L.C., Apostol, M. (2002). Atomic Clusters. In: Graja, A., Bułka, B.R., Kajzar, F. (eds) Molecular Low Dimensional and Nanostructured Materials for Advanced Applications. NATO Science Series, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0349-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0349-0_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0578-7

  • Online ISBN: 978-94-010-0349-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics