Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 59))

  • 722 Accesses

Abstract

Organic electroluminescent devices consist of an organic layer or layers sandwiched between two electrodes. The transparent anode, which injects holes, is almost invariably Indium-Tin Oxide (ITO) coated glass, which has a high work function, and the cathode is a low work function metal capable of injecting electrons. Arrival of an electron and hole at the same molecule results in an excited state and the emission of visible light.

In this paper the structure and properties of multilayer devices are reviewed and possible models considered. Recent progress in controlling the work function of ITO by the introduction of self assembled monolayers of dipolar phosphonic acids, chemically bonded monolayers of dipolar silyl groups, and thin layers of electron acceptors is reported. The beneficial effects of these treatments, which can reduce the threshold voltage for light emission (turn-on) by 4V and increase the maximum luminescence by a factor of 3.5, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kido, J. (1999) Organic Displays, Physics World 12, 27–30.

    CAS  Google Scholar 

  2. Sheats, J.R., Antoniodis, H.,Hueschen, M., Leonard, W., Millar., Moon, R., Roitman, D. and Stocking, A. (1996) Organic Electroluminescent Devices, Science 70, 884–888.

    Article  Google Scholar 

  3. Pope, M., Kallman, H. and Magnante, P. (1963) Electroluminescence in organic crystals, J.Chem.Phys. 38, 2042–2043.

    Article  CAS  Google Scholar 

  4. Helfrich, W. and Schneider, W.G. (1965) Recombination Radiation in Anthracene Crystals, Phys. Rev. Lett. 14, 229–231.

    Article  CAS  Google Scholar 

  5. Pope, M. and Swenberg, C.E. (1999) Electronic processes in organic crystals and polymers, Oxford Scientific Publishers, New York.

    Google Scholar 

  6. Meier, H., (1974) Organic Semiconductors, Verlag Chemie, Weinheim.

    Google Scholar 

  7. Ishii, H., Sugiyama, K., Ito, E. and Seki, K. (1999) Energy level alignment and interfacial electronic structure at organic/metal and organic/organic interfaces, Adv. Mater. 11, 605–625.

    Article  CAS  Google Scholar 

  8. Sano, M., Pope, M. and Kallman, H. (1965), Electroluminscence and Band Gap in Anthracene, J.Chem. Phys. 43, 2920–2921.

    Article  CAS  Google Scholar 

  9. Bässler, H. (1997) Semiconducting and photoconducting organic solids, in: W. Jones (Ed), Organic Molecular Solids. Properties and Applications, CRC Press, Boca Raton 267–308.

    Google Scholar 

  10. Eley, D.D. and Parfitt, G.D. (1955), The Semiconductivity of Organic Substances Pt 2, Trans. Farad. Soc. 51, 1529–1537

    Article  CAS  Google Scholar 

  11. Eley, D.D. and Willis, M.R. (1961), The electrical conductivity of solid free radicals and the electron tunnelling mechanism, Symposium on Electrical Conductivity in Organic Solids, eds, Kalimann, H. and Silver, M., Interscience, New York.

    Google Scholar 

  12. Friend, R.H. (2001) Conjugated polymers. New materials for optoelectronic devices, Pure and Applied Chem. 73, 425–430

    Article  CAS  Google Scholar 

  13. Tang, C.W. and VanSlye, S.A. (1987), Organic electroluminescent diodes, Appl. Phys.Lett. 51, 913–915.

    Article  CAS  Google Scholar 

  14. Shirota, Y. (2000) Organic materials for electronic and optoelectronic devices, J.Mater. Chem. 10, 1–25.

    Article  CAS  Google Scholar 

  15. Kalinowski, J. (1999) Electroluminescence in organics, J. Phys.D: Appl. Phys. 32 R179–R250

    Article  CAS  Google Scholar 

  16. Blom, P.W.M. and Vissenberg, M.C.J.M. (2000 ) Charge transport in poly(p-phenylene vinylene) light emitting diodes, Mat.Sci. Eng. R 27 53–94.

    Google Scholar 

  17. Mitschke, U. and Bäuerle, P. (2000), The electroluminescence of organic materials, J. Mater. Chem. 10, 1471–1507

    Article  CAS  Google Scholar 

  18. Fujihara, M. and Ganzorig, C. (2001), Improvement in electron and hole injection at electrodes and in recombination at a two-organic-layer interface, Mat.Sci. and Eng. B 85 203–208

    Google Scholar 

  19. Cox, P.A., (1987) The Electronic Structure and Chemistry of Solids, Oxford University Press, Oxford.

    Google Scholar 

  20. Gardner, T.J., Frisbie, C.D. and Wrighton, M.S. (1995) Systems for Orthogonal Self-Assembly of Electroactive Monolayers on Au and ITO: An Approach to Molecular Electronics, J.Am.Chem. Soc. 117, 6927–6933

    Article  CAS  Google Scholar 

  21. Appleyard, S.F.A. and Willis, M.R. (1998) Electroluminescence: enhanced injection using ITO electrodes coated with a self assembled monolayer, Optical Materials 9, 120–124.

    Article  CAS  Google Scholar 

  22. Appleyard, S.F.A., Day, S.R., Pickford, R.D. and Willis, M.R. (2000) Organic electroluminescent devices: enhanced carrier injection using SAM derivatised electrodes, J.Mater. Chem. 10, 169–173.

    Article  CAS  Google Scholar 

  23. Nuesch, F., Rotzinger, F., Si-Ahmed, L. and Zuppiroli, L. (1998) Chemical potential shifts at organic device electrodes induced by grafted monolayers, Chem. Phys. Lett. 288, 861–867.

    Article  CAS  Google Scholar 

  24. Day, S.R., Hatton, R.A., Chesters, M.A. and Willis, M.R. (2001) The use of charge-transfer layers to control hole injection in molecular organic light-emitting diodes, submitted to Thin Solid Films

    Google Scholar 

  25. Hatton, R.A., Day, S.R., Chesters, M.A. and Willis, M.R. (2001) Organic electroluminescent devices enhanced carrier injection using an organosilane self assembled monolayer. Thin Solid Films 394, 292–297.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Willis, M.R., Day, S.R., Hatton, R.A. (2002). Organic Electroluminescent Devices Control of Carrier Injection. In: Graja, A., Bułka, B.R., Kajzar, F. (eds) Molecular Low Dimensional and Nanostructured Materials for Advanced Applications. NATO Science Series, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0349-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0349-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0578-7

  • Online ISBN: 978-94-010-0349-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics