Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 59))

  • 725 Accesses

Abstract

In the last few years, considerable interest is being devoted to the obtaining of molecular wires that exhibit intramolecular electron transfer phenomena [14]. The interest arises from the potential use of such systems on integrated molecular devices [5,6] and the technical advantages that can be derived from there. First, the ever-increasing miniaturization of the architectural components of microchips reverts in the reduction size of computational systems. Second, time for an electron to travel through the circuit can be minimized using molecular-scale electronic architectures, which operate at far greater speeds. The main drawbacks are the high conformational requirements that the molecule to be used must fulfill. For instance, an average interelectrode distance of 100 Å obtained using “engineering-down” techniques; i.e., litographic techniques, requires the synthesis of molecular systems that in addition to a p-conjugated pathway, have similar dimensions to the interelectrode distance and restricted conformational geometries. One of the few examples of such exigent conformational systems has been reported by Gourdon et al. [7]. Another approach, which overcomes such difficulties, is the use of self-assembling techniques. Indeed, using this technique Tour et al. [8] were able to study quantitatively the conductance of a single benzene-1,4-dithiol molecule located between two gold nanoelectrodes. These results aim us to expect practical applications for this kind of systems in the near future. However, if a truly molecular computational device is to be achieved, new systematic studies that allow us to obtain rules for the prediction and control of the electron propagation in molecular wires are highly required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ziessel, R., Hissler, M., El-Ghayoury, A. and Harriman, A. (1998) Coord. Chem. Rev. 178-180, 1251.

    Article  CAS  Google Scholar 

  2. Paddon-Row, M.N. (1994) Acc. Chem. Res. 27, 18.

    Article  CAS  Google Scholar 

  3. Wasielewski, M.R. (1992) Chem. Rev. 92, 435.

    Article  CAS  Google Scholar 

  4. Jestin, L, Frère, P., Blanchard, P. and Roncali, J. (1998) Angew. Chem. Int. Ed. 37, 942.

    Article  CAS  Google Scholar 

  5. Tour, J.M., Kozaki, M. and Seminario, J.M. (1998) J. Am. Chem. Soc. 120, 8486.

    Article  CAS  Google Scholar 

  6. Seminario, J.M. and Tour, J.M. (1998), in Aviran, Ratner (eds.), Molecular Electronics-Science and Technology, New York Academy of Science, New York, p 69.

    Google Scholar 

  7. Gourdon, A. (1997) in C. Joachim and S. Roth (eds.), Atomic and Molecular Wires, NATO ASI series, Dordrecht, The Netherlands, p 89.

    Google Scholar 

  8. Ree, M.A., Zhou, C., Muller, C.J., Burgin, T.P. and Tour, J.M. (1997) Science 278, 252.

    Article  Google Scholar 

  9. Crutchley, R.J. (1994) Adv. Inorg. Chem. 41, 273.

    Article  CAS  Google Scholar 

  10. Creutz, C. (1983) Prog. Inorg. Chem. 30, 1.

    Article  CAS  Google Scholar 

  11. Nelsen, S.F., Tran, H.Q. and Nagy, M.A. (1998) J. Am. Chem. Soc. 120, 298.

    Article  CAS  Google Scholar 

  12. Nelsen, S.F., Ramm, J.J., and Powell, D.R. (1997) J. Am. Chem. Soc. 119, 6873.

    Article  CAS  Google Scholar 

  13. Lahlil, K., Moradpour, A., Bowlas, C., Menou, F., Cassoux, P., Bonvoisin, J., Launay, J.P., Dive, G. and Dehareng, D. (1995) J. Am. Chem. Soc. 117, 9995.

    Article  CAS  Google Scholar 

  14. Bonvoisin, J., Launay, J.P., Van der Auweraer, M. and De Schryver, F.C. (1994) J. Phys. Chem. 98, 5052.

    Article  CAS  Google Scholar 

  15. Rak, S.F. and Miller, L.L. (1992) J. Am. Chem. Soc. 114, 1388.

    Article  CAS  Google Scholar 

  16. Utamapanya, S. and Rajca, A. (1991) J. Am. Chem. Soc. 113, 9242.

    Article  CAS  Google Scholar 

  17. Telo, J.P., Shohoji, C.B.L., Herold, B. and Grampp, G. (1992) J. Chem. Soc. Faraday Trans. 88, 47.

    Article  CAS  Google Scholar 

  18. Gerson, F., Wellauer, T., Oliver, A.M. and Paddon-Row, M.N. (1990) Helv. Chim. Acta 73, 1586.

    Article  CAS  Google Scholar 

  19. Schultz, D.A., Kumar, R.K. (2001) J. Am. Chem. Soc. 123, 6431.

    Article  Google Scholar 

  20. Ballester, M. (1985) Acc. Chem. Res. 380.

    Google Scholar 

  21. Ballester, M. (1989) Adv. Phys. Org. Chem. 25, 267.

    Article  CAS  Google Scholar 

  22. Armet, O., Veciana, J., Rovira, C., Riera, J., Castaner, J., Molins, E, Rius, J., Miravitlles, C., Olivella, S. and Brichfeus, J. (1987) J. Phys. Chem. 91, 5608.

    Article  CAS  Google Scholar 

  23. Veciana, J., Rovira, C., Crespo, M.I. Armet, O., Domingo, V.M. and Palacio, F. (1991) J. Am. Chem. Soc. 113, 2552.

    Article  CAS  Google Scholar 

  24. Veciana, J., Rovira, C., Ventosa, N., Crespo, M.I. and Palacio, F. (1993) J. Am. Chem. Soc. 115, 57.

    Article  CAS  Google Scholar 

  25. Ruiz-Molina, D., Veciana, J., Palacio, F. and Rovira, C. (1997) J. Org. Chem. 62, 9009.

    Article  CAS  Google Scholar 

  26. Grosshenny, V., Harriman, A. and Ziessel, R. (1995) Angew. Chem. Int. Ed. Engl. 34, 1100.

    Article  CAS  Google Scholar 

  27. Patoux, C., Launay, J.P., Beley, M., Chodorowski-Kimmes, S., Collin, J.-P., James, S. and Sauvage, J.-P. (1998) J. Am Chem. Soc. 120, 3717.

    Article  CAS  Google Scholar 

  28. Batigelletti, F., Flamingi, L., Balzani, V., Collin, J.-P., Sauvage, J.-P., Constable, E.C. and Cargill Thompson, A.M.W. (1993) J. Chem. Soc. Chem Comm. 942.

    Google Scholar 

  29. Batigelletti, F., Flamingi, L., Balzani, V., Collin, J.-P., Sauvage, J.-P., Constable, E.C. and Cargill Thompson, A.M.W. (1994) J. Am. Chem Soc. 116, 7692.

    Article  Google Scholar 

  30. Benniston, A.C., Goulle, V., Harriman, A., Lehn, J.M. and Marczinke, B. (1994) J. Phys. Chem. 98, 7798.

    Article  CAS  Google Scholar 

  31. Sedo, J., Ruiz, D., Vidal-Gancedo, J., Rovira, C., Bonvoisin, J., Launay, J.P. and Veciana, J. (1997) Adv. Mater. 8, 748.

    Article  Google Scholar 

  32. Such methodology is based on the coulombimetric reduction of the polyradical species and the simultaneous observation of the corresponding electronic absorption spectra, regularly recorded during the reduction process for different values of the average number (n) of electrons added: Ribou, A.-C., Launay, J.-P., Takahashi, K., Nihira, T., Tarutani, S. and Spangler, C.W. (1994) Inorg. Chem. 33, 1325.

    Article  CAS  Google Scholar 

  33. Hush, N.S. (1985) Coord. Chem. Rev. 64, 135.

    Article  CAS  Google Scholar 

  34. (a) Bonvoisin, J., Launay, J.P., Rovira, C. and Veciana, J. (1994) Angew. Chem. Int. Ed. 33, 2106. (b) Rovira, G, Ruiz-Molina, D., Eisner, O., Vidal-Gancedo, J., Bonvoisin, J., Launay, J.-P., Veciana, J. (2001) Chem. Eur. J 7, 240.

    Article  Google Scholar 

  35. Eisner, O., Ruiz-Molina, D., Vidal-Gancedo, J., Rovira, C, Veciana, J. (2001) Nano Letters. 1, 117.

    Article  Google Scholar 

  36. Harriman, A. and Ziessel, R. (1998) Coord. Chem. Rev. 171, 131.

    Article  Google Scholar 

  37. Eisner, O, Ruiz-Molina, D., Vidal-Gancedo, J., Rovira, C. and Veciana, J. (1999) Chem. Comm. 579.

    Google Scholar 

  38. Carlin, R.L. (1986) in Magnetochemistry, Springer-Verlag, Berlin, p 71.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ruiz-Molina, D., Vidal-Gancedo, J., Sedo, J., Ratera, I., Veciana, J., Rovira, C. (2002). Intramolecular Electron Transfer in Organic Molecules. Molecular Nanowires. In: Graja, A., Bułka, B.R., Kajzar, F. (eds) Molecular Low Dimensional and Nanostructured Materials for Advanced Applications. NATO Science Series, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0349-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0349-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0578-7

  • Online ISBN: 978-94-010-0349-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics