Advertisement

Canonical Gravity and Mach’s Principle: Kinematic and Dynamic Solutions of the Space Problem

  • Horst-Heino von Borzeszkowski
  • Hans-Jürgen Treder
Part of the NATO Science Series book series (NAII, volume 60)

Abstract

From the viewpoint of the matter and space problems, we compare different theories of gravitation to the purely affine theory.

Keywords

Field Equation Bianchi Identity Space Problem Poincare Group Hole Argument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashtekar, A., Romano, J. D., and Tate, R. S. (1989) Phys. Rev. D40, 2572.MathSciNetADSGoogle Scholar
  2. 2.
    Ashtekar, A., and Stachel, J. (1991) Conceptual Problems of Quantum Gravity, Birkhäuser, Boston.MATHGoogle Scholar
  3. 3.
    Band, W. (1942) Phys. Rev. 61, 698.MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Barbour, J., and Pfister, H. (1995) Macks Principle: From Newton’s Bucket to Quantum Gravity, Birkhäuser, Boston.Google Scholar
  5. 5.
    Bergmann, P. G. (1962) General relativity of theory, in S. Flügge (ed.), Encyclopedia of Physics, Springer, Berlin et. al., vol. II.Google Scholar
  6. 6.
    v. Borzeszkowski, H.-H., and Treder, H.-J. (1993) Gen. Rel. Grav. 25, 291.ADSCrossRefGoogle Scholar
  7. 7.
    v. Borzeszkowski, H.-H., and Treder, H.-J. (1996) Mixed field theories and Weyl-Cartan geometry, in P. G. Bergmann, V. de Sabbata, H.-J. Treder (eds.), Quantum Gravity, World Scientific, Singapore et al.Google Scholar
  8. 8.
    v. Borzeszkowski, H.-H., and Treder, H.-J. (1996) Found. Phys. 26, 929.MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    v. Borzeszkowski, H.-H., and Treder, H.-J. (1997) Found. Phys. 27, 595MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    v. Borzeszkowski, H.-H., and Treder, H.-J. (1998) Found. Phys. 28, 273.MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    v. Borzeszkowski, H.-H., and Treder, H.-J. (2000) Bohr’s and Mach’s conceptions of non-locality in gravitation”, in P. G. Bergmann, V. de Sabbata, and J. N. Goldberg (eds.), Classical and Quantum Nonlocality, World Scientific, Singapore.Google Scholar
  12. 12.
    v. Borzeszkowski, H.-H., and Treder, H.-J. (2001) Gen. Rel. Grav. 33, No. 8 (to be published).Google Scholar
  13. 13.
    v. Borzeszkowski, H.-H., and Treder, H.-J. (2001) Metric and connection: kinematic and dynamic solutions of the space problem, in W. Jahnke, A. Pelster, H.-J. Schmidt, M. Bachmann (eds.), Fluctuating Paths and Fields, World Scientific, Singapore.Google Scholar
  14. 14.
    v. Borzeszkowski, H.-H., Kasper, U., Kreisel, E., Liebscher, D.-E., and Treder, H.-J. (1971) Gravitationstheorie und Äquivalenzprinzip, H.-J. Treder (ed.), Akademie Verlag, Berlin.Google Scholar
  15. 15.
    v. Borzeszkowski, H.-H., Treder, H.-J., and Yourgrau, W. (1978) Ann. Physik (Leipzig) 35, 471.MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Capovilla, R., Dell, J., Jacobson, T., and Mason, L. (1991) Class. Quantum Grav. 8, 4LGoogle Scholar
  17. 17.
    Cartan, E. (1923) Sur un théorème fundamental de H. Weyl, Jour. d. math. p. et a. 2, 167 (Cf. also: Cartan, E. (1955)(Euvres complétes, Gauthier-Villars, Paris, p. 633.)Google Scholar
  18. 18.
    Einstein, A. (1914) Bemerkungen, Appendix to the reprint of the paper by M. Grossmann and A. Einstein, Math. Phys. 62, 260.Google Scholar
  19. 19.
    Einstein, A. (1916) Hamiltonsches Prinzip und allgemeine Relativitätstheorie, Sitz. Ber. Preuss. Akad. Wiss. Berlin, 111.Google Scholar
  20. 20.
    Einstein, A. (1923) Zur allgemeinen Relativitätstheorie, Sitz. Ber. Preuss. Akad. Wiss. Berlin, 32.Google Scholar
  21. 21.
    Einstein, A. (1928) Neue Möglichkeit fü r eine einheitliche Feldtheorie von Gravitation und Elektrizität, Berliner Ber., p. 224.Google Scholar
  22. 22.
    Einstein, A. (1928) Riemann-Geometrie unter Aufrechterhaltung des Begriffs des Fernparallelismus, Berichte Preuss. Akad. Wiss. Berlin, p.219.Google Scholar
  23. 23.
    Einstein, A. (1929) Zur einheitlichen Feldtheorie, Berliner Ber., p. 2.Google Scholar
  24. 24.
    Einstein, A. (1929) Einheitliche Feldtheorie und Hamiltonsches Prinzip, Berliner Ber., p. 124.Google Scholar
  25. 25.
    Einstein, A. (1950, 1955) The Meaning of Relativity (4th and 5th edn.), Princeton University Press, Princeton.MATHGoogle Scholar
  26. 26.
    Einstein, A. (1968) Remark to Weyl, in H. Weyl, Gravitation und Elektrizität, in Hermann Weyl, Gesammelte Abhandlungen, Springer, Berlin et al., vol. 2, p. 40.Google Scholar
  27. 27.
    Einstein, A. (1969) Über spezielle und allgemeine Relativitätstheorie, Akademie Verlag, Berlin; Pergamon Press, Oxford; Vieweg, Braunschweig; (21th ed.), App. 5: Relativität und Raumproblem.MATHGoogle Scholar
  28. 28.
    Einstein, A., and Mayer, W. (1931) Systematische Untersuchung ü ber kompatible Feldgleichungen, welche von einem Riemannschen Raum mit Fernparallelismus gesetzt werden können, Berliner Ber., p. 3.Google Scholar
  29. 29.
    Einstein, A., and Mayer, W. (1932) Semivektoren und Spinoren, Sitz. Ber. Preuss. Akad. Wiss. Berlin, 522–550.Google Scholar
  30. 30.
    Freudenthal, H. (1956) Math. Z. 63, 374.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Hayashi, K. (1976) Phys. Lett. 65B, 437.ADSGoogle Scholar
  32. 32.
    Hayashi, K., and Nakano, T. (1967) Progr. Theor. Phys. 38, 49.CrossRefGoogle Scholar
  33. 33.
    Hayashi, K., and Shirafuji, T. (1977) Prog. Theor. Phys. 57, 302.MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    Hayashi, K., and Shirafuji, T. (1979) Phys. Rev. D 19, 3524.MathSciNetADSGoogle Scholar
  35. 35.
    Hayashi, K., and Shirafuji, T. (1980) Progr. Theor. Phys. 64, 866, 883, 1435.MathSciNetADSMATHGoogle Scholar
  36. 36.
    Hehl. F.W. (1980) Four lectures on Poincaré gauge theory, in P. G. Bergmann and V. de Sabbata (eds.), Cosmology and Gravitation, Plenum, New York.Google Scholar
  37. 37.
    Hehl, F.W., van der Heyde, P., Kerlick, G. D., and Nesfer, J. M. (1976). Rev. Mod. Phys. 48, 393.ADSCrossRefGoogle Scholar
  38. 38.
    Hehl, F. W., and McCrea, J. D. (1986) Found. Phys. 16, 267.MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Hehl, F.W., McCrea, D., Mielke, E. W., and Nee’man, Y. (1995) Metric-affine theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance Phys. Reports 258, 1–171.MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Infeld, L., and van der Waerden, B. L. (1933) Die Wellengleichung des Elektrons in der allgemeinen Relativitätstheorie, Sitz. Ber. Preuss. Akad. Wiss. Berlin, 380–401.Google Scholar
  41. 41.
    Kleinert, H. (2000) Gen. Rel. Grav. 32, 769; Kleinert, H. (2000) Gen. Rel. Grav. 32, 1271.MathSciNetADSMATHCrossRefGoogle Scholar
  42. 42.
    Kobayashi, L., and Nomizu, K. (1963) Foundations of Differential Geometry, Interscience, London.MATHGoogle Scholar
  43. 43.
    Kohler, M. (1952) Z Physik 131, 571.MathSciNetADSMATHCrossRefGoogle Scholar
  44. 44.
    Kohler, M. (1953) Z Physik 134, 286, 306.MathSciNetADSMATHCrossRefGoogle Scholar
  45. 45.
    Kopczynski, W. (1982) J. Phys. A 15, 493.MathSciNetADSMATHCrossRefGoogle Scholar
  46. 46.
    Kopczyński, W., and Trautmann, A. (1992) Spacetime and Gravitation, Wiley, Chisester and PWN Polish Scientific Publishers, Warsaw.MATHGoogle Scholar
  47. 47.
    v. Laue, M. (1965) Die Relativitätstheorie, Zweiter Band. Die Allgemeine Relativitätstheorie, Friedr. Vieweg & Sohn, Braunschweig, (5th ed.).Google Scholar
  48. 48.
    Liebscher, D.-E. (1973) Ann. Physik (Leipzig) 30, 309 and 321.MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Lorentz, H. A. (1917) On Hamilton’s principle in Einstein’s theory of gavitation, Proc. K. Akad. Wet. Amsterdam 19, 751.Google Scholar
  50. 50.
    Møller, C. (1961) Math.-Fys. Skr. Dansk. Vidensk. Selsk. 1, No. 10.Google Scholar
  51. 51.
    Møller, C. (1978) Math.-Fys. Skr. Dan. Vid. Selskab 39, No. 13.Google Scholar
  52. 52.
    Møller, C. (1979) Are the singularities in the theory of gravitation inevitable?, in H.-J. Treder (ed.), Einstein-Centenarium, Akademie Verlag, Berlin.Google Scholar
  53. 53.
    Müller-Hoissen, F., and Nitsch, J. (1983) Phys. Rev. D 28, 718.MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    Papapetrou, A. (1948) Proc. Irish Acad. 52, 11.MathSciNetGoogle Scholar
  55. 55.
    Pauli, W., and Fierz, M. (1939) Helv. Phys. Acta XII, 297.Google Scholar
  56. 56.
    Pellegrini, C., and Pleba°ski, J. (1963) Tetrad fields and gravitational fields, Math.-Fys. Skr. Dan. Vid. Selskab 2, No. 4.Google Scholar
  57. 57.
    Rosen, N (1940) Phys. Rev. 57, 147, 150.MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    Schmidt, B. G. (1973) Commun. Math. Phys. 29, 55.ADSCrossRefGoogle Scholar
  59. 59.
    Schouten, J. A. (1954) Ricci-Calkculus., Springer, Berlin.Google Scholar
  60. 60.
    Schrödinger, E. (1950) Space — Time — Structure, Cambridge University Press, Cambridge.MATHGoogle Scholar
  61. 61.
    Treder, H.-J. (1971) Gen. Rel. Grav. 2, 313.MathSciNetADSMATHCrossRefGoogle Scholar
  62. 62.
    Treder, H.-J.: (1978) Ann. Phys. Leipzig 35, 371.ADSGoogle Scholar
  63. 63.
    Treder, H.-J. (1992) Found. Phys 22, 301.CrossRefGoogle Scholar
  64. 64.
    Treder, H.-J. (1994) Astron. Nachr. 315, 1.MathSciNetADSMATHCrossRefGoogle Scholar
  65. 65.
    Treder, H.-J., and v. Borzeszkowski, H.-H. (1973) Int. J. Theor. Phys. 8, 219.CrossRefGoogle Scholar
  66. 66.
    Weyl, H. (1924) Die Naturwissenschaften 12, 197–204.ADSMATHCrossRefGoogle Scholar
  67. 67.
    Weyl, H. (1923) Mathematische Analyse des Raumproblems, Springer, Berlin.CrossRefGoogle Scholar
  68. 68.
    Weyl, H. (1929) Zs. Physik 56, 530.CrossRefGoogle Scholar
  69. 69.
    Yourgrau, W., v. Borzeszkowski, H.-H., and Treder, H.-J. (1979) Astron. Nachr. 300, 57.ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Horst-Heino von Borzeszkowski
    • 1
  • Hans-Jürgen Treder
    • 2
  1. 1.Institute for Theoretical PhysicsTechnical University BerlinBerlinGermany
  2. 2.PotsdamGermany

Personalised recommendations