Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 60))

Abstract

We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.

This article is based upon an article of the same title published in Living Reviews in Relativity, http://www.livingreviews.org

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.M. Wald, General Relativity, University of Chicago Press (Chicago, 1984).

    Google Scholar 

  2. S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-time, Cambridge University Press (Cambridge, 1973).

    Google Scholar 

  3. P. T. Chrusciel, E. Delay. G.J. Galloway, and R. Howard, “The Area Theorem”, gr-qc/0001003.

    Google Scholar 

  4. S.W. Hawking, “Gravitational Radiation from Colliding Black Holes”, Phys. Rev. Lett. 26, 1344–1346 (1971).

    Article  ADS  Google Scholar 

  5. J.D. Bekenstein, “Black Holes and Entropy”, Phys. Rev. D7, 2333–2346 (1973).

    MathSciNet  ADS  Google Scholar 

  6. J.D. Bekenstein, “Generalized Second Law of Thermodynamics in Black-Hole Physics”, Phys. Rev. D9, 3292–3300 (1974).

    ADS  Google Scholar 

  7. J.M. Bardeen, B. Carter, and S.W. Hawking, “The Four Laws of Black Hole Mechanics” Commun. Math. Phys. 31, 161–170 (1973).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. M. Heusler, Black Hole Uniqueness Theorems, Cambridge University Press (Cambridge, 1996).

    Google Scholar 

  9. B. Carter, “Black Hole Equilibrium States” in Black Holes, ed. by C. DeWitt and B.S. DeWitt, 57–214, Gordon and Breach (New York, 1973).

    Google Scholar 

  10. H. Friedrich, I. Racz, and R.M. Wald, “On the Rigidity Theorem for Spacetimes with a Stationary Event Horizon or a Compact Cauchy Horizon”, Commun. Math. Phys. 204, 691–707 (1999); gr-qc/9811021.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. D. Sudarsky and R.M. Wald, “Extrema of Mass, Stationarity and Staticity, and Solutions to the Einstein-Yang-Mills Equations” Phys. Rev. D46, 1453–1474 (1992).

    MathSciNet  ADS  Google Scholar 

  12. D. Sudarsky and R.M. Wald, “Mass Formulas for Stationary Einstein-Yang-Mills Black Holes and a Simple Proof of Two Staticity Theorems” Phys. Rev. D47, R5209-R5213 (1993).

    Google Scholar 

  13. P.T. Chrusciel and R.M. Wald, “Maximal Hypersurfaces in Stationary Asymptotically Flat Spacetimes” Commun. Math Phys. 163, 561–604 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. I. Racz and R.M. Wald, “Global Extensions of Spacetimes Describing Asymptotic Final States of Black Holes” Class. Quant. Grav. 13, 539–552 (1996); gr-qc/9507055.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. R.M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, University of Chicago Press (Chicago, 1994).

    Google Scholar 

  16. V. Iyer and R.M. Wald, “Some Properties of Noether Charge and a Proposal for Dynamical Black Hole Entropy”, Phys. Rev. D50, 846–864 (1994).

    MathSciNet  ADS  Google Scholar 

  17. R. Sorkin, “Two Topics Concerning Black Holes: Extremality of the Energy, Fractality of the Horizon” in Proceedings of the Conference on Heat Kernel Techniques and Quantum Gravity, ed. by S.A. Fulling, 387–407, University of Texas Press, (Austin, 1995); gr-qc/9508002.

    Google Scholar 

  18. W. Israel, “Third Law of Black-Hole Dynamics: a Formulation and Proof”, Phys. Rev. Lett. 57, 397–399 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Aizenman and E.H. Lieb, “The Third Law of Thermodynamics and the Degeneracy of the Ground State for Lattice Systems”, J. Stat. Phys. 24, 279–297 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  20. R.M. Wald, “‘Nernst Theorem’ and Black Hole Thermodynamics”, Phys. Rev. D56, 6467–6474 (1997); gr-qc/9704008.

    MathSciNet  ADS  Google Scholar 

  21. A. Ashtekar, C. Beetle, O. Dreyer, S. Fairhurst, B. Krishnan, J. Lewandowski, and J. Wisniewski, “Generic Isolated Horizons and Their Applications”, gr-qc/0006006.

    Google Scholar 

  22. A. Ashtekar, C. Beetle, and S. Fairhurst, “Isolated Horizons: A Generalization of Black Hole Mechanics”, Class. Quant. Grav. 16, L1-L7 (1999); gr-qc/9812065.

    Google Scholar 

  23. A. Ashtekar, C. Beetle, and S. Fairhurst, “Mechanics of Isolated Horizons”, Class. Quant. Grav. 17, 253–298 (2000); gr-qc/9907068.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. A. Ashtekar and A. Corichi, “Laws Governing Isolated Horizons: Inclusion of Dilaton Couplings”, Class. Quant. Grav. 17, 1317–1332 (2000); gr-qc/9910068.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. J. Lewandowski, “Spacetimes Admitting Isolated Horizons”, Class. Quant. Grav. 17, L53-L59 (2000); gr-qc/9907058.

    Google Scholar 

  26. A. Ashtekar, S. Fairhurst, and B. Krishnan, “Isolated Horizons: Hamiltonian Evolution and the First Law”, gr-qc/0005083.

    Google Scholar 

  27. A. Corichi, U. Nucamendi, and D. Sudarsky, “Einstein-Yang-Mills Isolated Horizons: Phase Space, Mechanics, Hair and Conjectures” Phys. Rev. D62, 044046 (19 pages) (2000); gr-qc/0002078.

    Google Scholar 

  28. S.W. Hawking, “Particle Creation by Black Holes”, Commun. Math. Phys. 43, 199–220 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  29. L. Parker, “Quantized Fields and Particle Creation in Expanding Universes”, Phys. Rev. 183, 1057–1068 (1969).

    Article  ADS  MATH  Google Scholar 

  30. R.M. Wald, “On Particle Creation by Black Holes”, Commun. Math. Phys. 45, 9–34 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  31. K. Fredenhagen and R. Haag, “On the Derivation of the Hawking Radiation Associated with the Formation of a Black Hole”, Commun. Math. Phys. 127, 273–284 (1990).

    Article  ADS  Google Scholar 

  32. W.G. Unruh, “Experimental Black-Hole Evaporation?”, Phys. Rev. Lett. 46, 1351–1353 (1981).

    Article  ADS  Google Scholar 

  33. W.G. Unruh, “Dumb Holes and the Effects of High Frequencies on Black Hole Evaporation” Phys. Rev. D51, 2827–2838 (1995); grqc/9409008.

    MathSciNet  ADS  Google Scholar 

  34. R. Brout, S. Massar, R. Parentani, and Ph. Spindel, “Hawking Radiation Without Transplanckian Frequencies”, Phys. Rev. D52, 4559–4568 (1995); hep-th/9506121.

    ADS  Google Scholar 

  35. S. Corley and T. Jacobson, “Hawking Spectrum and High Frequency Dispersion” Phys. Rev. D54, 1568–1586 (1996); hep-th/9601073.

    MathSciNet  ADS  Google Scholar 

  36. T. Jacobson, “On the Origin of the Outgoing Black Hole Modes” Phys. Rev. D53, 7082–7088 (1996); hep-th/9601064.

    ADS  Google Scholar 

  37. B. Reznik, “Trans-Planckian Tail in a Theory with a Cutoff”, Phys. Rev. D55, 2152–2158 (1997); gr-qc/9606083.

    ADS  Google Scholar 

  38. M. Visser, “Hawking radiation without black hole entropy”, Phys. Rev. Lett. 80, 3436–3439 (1998); gr-qc/9712016.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. S. Corley and T. Jacobson, “Lattice Black Holes”, Phys. Rev. D57, 6269–6279 (1998); hep-th/9709166.

    MathSciNet  ADS  Google Scholar 

  40. T. Jacobson and D. Mattingly, “Hawking radiation on a falling lattice”, Phys. Rev. D61 024017 (10 pages) (2000); hep-th/9908099.

    Google Scholar 

  41. W.G. Unruh, “Notes on Black Hole Evaporation”, Phys. Rev. D14, 870–892 (1976).

    ADS  Google Scholar 

  42. B.S. Kay and R.M. Wald, “Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Spacetimes with a Bifurcate Killing Horizon”, Phys. Rep. 207, 49–136 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  43. J.J. Bisognano and E.H. Wichmann, “On the Duality Condition for Quantum Fields”, J. Math. Phys. 17, 303–321 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  44. J.B. Hartle and S.W. Hawking, “Path Integral Derivation of Black Hole Radiance”, Phys. Rev. D13, 2188–2203 (1976).

    ADS  Google Scholar 

  45. R. Geroch, colloquium given at Princeton University, December, 1971 (unpublished).

    Google Scholar 

  46. J.D. Bekenstein, “Universal Upper Bound on the Entropy-to-Energy Ratio for Bounded Systems”, Phys. Rev. D23, 287–298 (1981).

    MathSciNet  ADS  Google Scholar 

  47. W.G. Unruh and R.M. Wald, “Acceleration Radiation and the Generalized Second Law of Thermodynamics”, Phys. Rev. D25, 942–958 (1982).

    ADS  Google Scholar 

  48. W.H. Zurek and K.S. Thorne, “Statistical Mechanical Origin of the Entropy of a Rotating, Charged Black Hole”, Phys. Rev. Lett. 54, 2171–2175 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  49. K.S. Thorne, W.H. Zurek, and R.H. Price, “The Thermal Atmosphere of a Black Hole”, in Black Holes: The Membrane Paradigm, ed. by K.S. Thorne, R.H. Price, and D.A. Macdonald, 280–340, Yale University Press (New Haven, 1986).

    Google Scholar 

  50. V.P. Frolov and D.N. Page, “Proof of the Generalized Second Law for Quasistatic, Semiclassical Black Holes”, Phys. Rev. Lett. 71, 3902–3905 (1993).

    Article  ADS  Google Scholar 

  51. R.D. Sorkin, “The Statistical Mechanics of Black Hole Thermodynamics”, in Black Holes and Relativistic Stars, ed. by R.M. Wald, 177–194, University of Chicago Press (Chicago, 1998); gr-qc/9705006.

    Google Scholar 

  52. D.N. Page, “Defining Entropy Bounds”, hep-th/0007238.

    Google Scholar 

  53. J.D. Bekenstein, “On Page’s Examples Challenging the Entropy Bound”, gr-qc/0006003.

    Google Scholar 

  54. D.N. Page, “Huge Violations of Bekenstein’s Entropy Bound”, gr-qc/0005111.

    Google Scholar 

  55. D.N. Page, “Subsystem Entropy Exceeding Bekenstein’s Bound”, hepth/0007237.

    Google Scholar 

  56. J.D. Bekenstein, “Entropy Content and Information Flow in Systems with Limited Energy”, Phys. Rev. D30, 1669–1679 (1984).

    MathSciNet  ADS  Google Scholar 

  57. J.D. Bekenstein and M. Schiffer, “Quantum Limitations on the Storage and Transmission of Information”, Int. J. Mod. Phys. C1, 355 (1990).

    ADS  Google Scholar 

  58. C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation, Freeman (San Francisco, 1973).

    Google Scholar 

  59. R. Penrose, “Quasi-Local Mass and Angular Momentum ”, Proc. Roy. Soc. Lond. A381, 53–63 (1982).

    MathSciNet  ADS  Google Scholar 

  60. J.D. Brown and J.W. York, “Quasilocal Energy and Conserved Charges Derived from the Gravitational Action”, Phys. Rev. D47, 1407–1419 (1993).

    MathSciNet  ADS  Google Scholar 

  61. R.D. Sorkin, R.M. Wald, and Z.J. Zhang, “Entropy of Self-Gravitating Radiation”, Gen. Rel. Grav. 13, 1127–1146 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  62. J.D. Bekenstein, “Entropy Bounds and the Second Law for Black Holes”, Phys. Rev. D27, 2262–2270 (1983).

    ADS  Google Scholar 

  63. J.D. Bekenstein, “Entropy Bounds and Black Hole Remnants”, Phys. Rev. D49, 1912–1921 (1994).

    MathSciNet  ADS  Google Scholar 

  64. J.D. Bekenstein, “Non-Archimedian Character of Quantum Buoyancy and the Generalized Second Law of Thermodynamics”, Phys. Rev. D60, 124010 (9 pages) (1999); gr-qc/9906058.

    Google Scholar 

  65. W.G. Unruh and R.M. Wald, “Entropy Bounds, Acceleration Radiation and the Generalized Second Law”, Phys. Rev. D27, 2271–2276 (1983).

    ADS  Google Scholar 

  66. M.A. Pelath and R.M. Wald, “Comment on Entropy Bounds and the Generalized Second Law”, Phys. Rev. D60, 104009 (4 pages) (1999); gr-qc/9901032.

    Google Scholar 

  67. E.E. Flanagan, D. Marolf, and R.M. Wald, “Proof of Classical Versions of the Bousso Entropy Bound and of the Generalized Second Law” Phys. Rev. D62, 084035 (11 pages) (2000); hep-th/9909373

    Google Scholar 

  68. W. Anderson, “Does the GSL Imply and Entropy Bound?”, in Matters of Gravity, ed. by J. Pullin, gr-qc/9909022.

    Google Scholar 

  69. G.’ t Hooft, “On the Quantization of Space and Time”, in Quantum Gravity, ed. by M.A. Markov, V.A. Berezin, and V.P. Frolov, 551–567, World Scientific Press (Singapore, 1988).

    Google Scholar 

  70. J.D. Bekenstein, “Do We Understand Black Hole Entropy?”, in Proceedings of the VII Marcel Grossman Meeting, 39–58, World Scientific Press (Singapore, 1996); gr-qc/9409015.

    Google Scholar 

  71. L. Susskind, “The World as a Hologram”, J. Math. Phys. 36, 6377–6396 (1995); hep-th/9409089.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. R. Bousso, “A Covariant Entropy Conjecture”, JHEP 07, 004 (1999); hep-th/9905177.

    Google Scholar 

  73. R. Bousso, “Holography in General Space-times”, JHEP 06, 028 (1999); hep-th/9906022.

    Google Scholar 

  74. R. Bousso, “The Holographic Principle for General Backgrounds”, hep-th/9911002.

    Google Scholar 

  75. G. Gibbons and S.W. Hawking “Action Integrals and Partition Functions in Quantum Gravity”, Phys. Rev. D15, 2752–2756 (1977).

    ADS  Google Scholar 

  76. J.D. Brown and J.W. York, “Microcanonical Functional Integral for the Gravitational Field”, Phys. Rev. D47, 1420–1431 (1993).

    MathSciNet  ADS  Google Scholar 

  77. R.M. Wald, “Black Hole Entropy is the Noether Charge”, Phys. Rev. D48, R3427-R3431 (1993).

    Google Scholar 

  78. V. Iyer and R.M. Wald, “A Comparison of Noether Charge and Euclidean Methods for Computing the Entropy of Stationary Black Holes”, Phys. Rev. D52, 4430–4439 (1995); gr-qc/9503052.

    ADS  Google Scholar 

  79. L. Bombelli, R.K. Koul, J. Lee, and R. Sorkin, “Quantum Source of Entropy for Black Holes” Phys. Rev. D34, 373–383 (1986).

    MathSciNet  ADS  Google Scholar 

  80. C. Callen and F. Wilzcek, “On Geometric Entropy”, Phys. Lett B333, 55–61 (1994).

    ADS  Google Scholar 

  81. C. Holzhey, F. Larsen, and F. Wilzcek, “Geometrie and Renormalized Entropy in Conformai Field Theory”, Nucl. Phys. B424, 443–467 (1994).

    Google Scholar 

  82. L. Susskind and J. Uglam, “Black Hole Entropy in Canonical Quantum Gravity and Superstring Theory”, Phys. Rev. D50, 2700–2711 (1994).

    ADS  Google Scholar 

  83. R. Sorkin, “How Wrinkled is the Surface of a Black Hole?” in Proceedings of the First Australasian Conference on General Relativity and Gravitation, ed. by D. Wiltshire, 163–174, University of Adelaide Press, (Adelaide, 1996); gr-qc/9701056.

    Google Scholar 

  84. D. Dou, “Causal Sets, a Possible Interpretation for the Black Hole Entropy, and Related Topics”, Ph.D. thesis (SISSA, Trieste, 1999).

    Google Scholar 

  85. G.’ t Hooft, “On the Quantum Structure of a Black Hole”, Nucl. Phys. B256, 727–745 (1985).

    Article  ADS  Google Scholar 

  86. S. Mukohyama, “Aspects of Black Hole Entropy”, gr-qc/9912103.

    Google Scholar 

  87. V.P. Frolov, D.V. Fursaev and A.I. Zelnikov, “Statistical Origin of Black Hole Entropy in Induced Gravity”, Nucl. Phys. B486, 339–352 (1997); hep-th/9607104.

    Article  MathSciNet  ADS  Google Scholar 

  88. V.P. Frolov and D.V. Fursaev, “Mechanism of the Generation of Black Hole Entropy in Sakharov’s Induced Gravity”, Phys. Rev. D56, 2212–2225 (1997); hep-th/9703178.

    ADS  Google Scholar 

  89. A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, “Quantum Geometry and Black Hole Entropy”, Phys. Rev. Lett. 80, 904–907 (1998); gr-qc/9710007.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  90. A. Ashtekar and K. Krasnov, “Quantum Geometry and Black Holes”, in Black Holes, Gravitational Radiation, and the Universe, ed. by B.R. Iyer and B. Bhawal, 149–170, Kluwer Academic Publishers (Dordrecht, 1999); gr-qc/9804039.

    Google Scholar 

  91. A. Ashtekar, A. Corichi, and K. Krasnov, “Isolated Horizons: the Classical Phase Space”, gr-qc/9905089.

    Google Scholar 

  92. D. Marolf, “String/M-branes for Relativists”, gr-qc/9908045.

    Google Scholar 

  93. G. Horowitz, “Quantum States of Black Holes”, in Black Holes and Relativistic Stars, ed. by R.M. Wald, 241–266, University of Chicago Press (Chicago, 1998); gr-qc/9704072.

    Google Scholar 

  94. A. Peet, “TASI Lectures on Black Holes in String Theory”, hepth/0008241.

    Google Scholar 

  95. G.L. Cardoso, B. de Wit, and T. Mohaupt, “Area Law Corrections from State Counting and Supergravity”, Class. Quant. Grav. 17 1007–1015 (2000); hep-th/9910179.

    Article  ADS  MATH  Google Scholar 

  96. J.M. Maldacena and A. Strominger, “Black Hole Greybody Factors and D-Brane Spectroscopy”, Phys.Rev. D55, 861–870 (1997); hep-th/9609026.

    MathSciNet  ADS  Google Scholar 

  97. S. Carlip, “Entropy from Conformai Field Theory at Killing Horizons”, Class. Quant. Grav. 16, 3327–3348 (1999); gr-qc/9906126.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  98. S. Carlip, “Black Hole Entropy from Horizon Conformai Field Theory”, gr-qc/9912118.

    Google Scholar 

  99. J. Hartle, “Generalized Quantum Theory in Evaporating Black Hole Spacetimes”, in Black Holes and Relativistic Stars, ed. by R.M. Wald, 195–219, University of Chicago Press (Chicago, 1998); gr-qc/9705022.

    Google Scholar 

  100. T. Banks, L. Susskind, and M.E. Peskin, “Difficulties for the Evolution of Pure States into Mixed States”, Nucl. Phys. B244, 125–134 (1984).

    MathSciNet  ADS  Google Scholar 

  101. J. Ellis, J.S. Hagelin, D.V. Nanopoulos, and M. Srednicki, “Search for Violations of Quantum Mechanics”, Nucl. Phys. B241, 381–405 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  102. W.G. Unruh and R.M. Wald, “Evolution Laws Taking Pure States to Mixed States in Quantum Field Theory”, Phys. Rev. D52, 2176–2182 (1995); hep-th/9503024.

    MathSciNet  ADS  Google Scholar 

  103. R. Penrose, “Singularities and Time-Asymmetry” in General Relativity, an Einstein Centennary Survey, ed. by S.W. Hawking and W. Israel, 581–638, Cambridge University Press (Cambridge, 1979).

    Google Scholar 

  104. R.M. Wald, “Gravitation, Thermodynamics, and Quantum Theory”, Class. Quant. Grav. 16, A177-A190 (1999); gr-qc/079901033.

    Google Scholar 

  105. R.M. Wald, “Black Holes and Thermodynamics”, in Black Holes and Relativistic Stars, ed. by R.M. Wald, 155–176, University of Chicago Press (Chicago, 1998); gr-qc/9702022.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wald, R.M. (2002). The Thermodynamics of Black Holes. In: Bergmann, P.G., de Sabbata, V. (eds) Advances in the Interplay Between Quantum and Gravity Physics. NATO Science Series, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0347-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0347-6_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0593-0

  • Online ISBN: 978-94-010-0347-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics