Skip to main content

The Electron Spin in Nanoelectronics

  • Chapter
Frontiers of Multifunctional Nanosystems

Abstract

While the silicon-based CMOS electronics is entering the nano-regime, it is preparing itself to accept new materials for increasing the functionality of the future IC’s. One example is the integration of magnetic multilayer nanostructures for creating a new generation of Magnetic Random Access Memories. Proven functionality in magnetic devices with nanoscale dimensions is a key asset for their use in other types of integrated devices such as lab-on-chip biosensors. This chapter will describe the technological challenges to realise the full potential of the integrated magnetic structures in which the electron spin rules the characteristics. One recognised area of future nanoelectronies is that of the use of the electron spin in semiconductor components. This field has been coined spintronics. A second part of this chapter will be devoted to the description of some of the current challenges of spintronics. Most emphasis will be placed on the issue of injecting a spin-polarized current in a semiconductor heterostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Prinz, Science 282,1660–1663 (1998).

    Article  Google Scholar 

  2. M. N. Baibich, J. M. Broto, A. Fert, F. Nuygen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  ADS  Google Scholar 

  3. G. Binash, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B B39, 4828 (1989).

    Article  ADS  Google Scholar 

  4. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  ADS  Google Scholar 

  5. J. De Boeck and G. Borghs, Physics World 12, 27–32 (1999).

    Google Scholar 

  6. J. M. Daughton, J. Appl. Phys 81, 3758–3763 (1997).

    Article  ADS  Google Scholar 

  7. M. Johnson, IEEE Spectrum, 33 (2000).

    Google Scholar 

  8. J. Daughton, (2000).

    Google Scholar 

  9. K.-M. H. Lenssen, D. J. Adelerhof, H. J. Gassen, A. E. T. Kuiper, G. H. J. Somers, and J. B. A. D. van Zon, Sensors and Actuators 85, 1–8 (2000).

    Article  Google Scholar 

  10. ITRS, (2000).

    Google Scholar 

  11. M. Johnson, B. R. Bennet, M. J. Yang, M. M. Miller, and B. V. Shanabrook, Appl. Phys. Lett. 71, 974–976 (1997).

    Article  ADS  Google Scholar 

  12. F. M. Peeters and P. Vasilopoulos, Phys. Rev. B 47, 1466–1473 (1993).

    Article  ADS  Google Scholar 

  13. F. B. Mancoft R. M. Clarke, C. M. Marcus, S. C. Zhang, K. Campman, and A. C. Gossard, Phys. Rev. B 51, 13369–13273(1995).

    Google Scholar 

  14. P. D. Ye, D. Weiss, R. R. Gerhardts, M. Seeger, K. von Klitzing, K. Eberl, and H. Nickel, Phys. Rev. Lett. 74, 3013–3016 (1995).

    Article  ADS  Google Scholar 

  15. M. A. Carmona, A. K. Geim, A. Nogaret, P. C. Main, T. J. Foster, M. Henini, S. P. Beaumont, and M. G. Blamire, Phys. Rev. Lett. 74, 3009–3012 (1995).

    Article  ADS  Google Scholar 

  16. F.M. Peeters and J. De Boeck, in Handbook of Nanostructured Materials and Nanotechnology, Vol. 3, Electrical Properties, edited by H. S. Nalwa (Academic Press, 2000), p. 345–410.

    Google Scholar 

  17. M. Takenaka and Y. Nakano, Proc. of 1 lth Intern.Conf. on Indium Phosphide and related materials, may, 289–292 (1999).

    Google Scholar 

  18. W. Zaets and K. Ando, IEEE Photon. Technol. Lett. 11, 1012–1014 (1999).

    Article  ADS  Google Scholar 

  19. M. Vanwolleghem, M. Leys, J. Das, L. Lagae, J. De Boeck, P. Van Daele, and R. Baets, Presented at LEOS 2001, San Diego, November (2001).

    Google Scholar 

  20. H. Boeve, J. Das, C. Bruynseraede, J. De Boeck, and G. Borghs, Electron. Lett. 34,1754–1755 (1998).

    Article  Google Scholar 

  21. J. Das, H. Boeve, J. De Boeck, and G. Borghs, in Hybrid integration of spin-valves and MESFETS: technology test forfuture MRAM”, Leuven, 1999, p. 272–275.

    Google Scholar 

  22. R. C. Sousa, P. P. Freitas, V. Chu, and J. P. Conde, Appl. Phys. Lett. 74, 3893–3895 (1999).

    Article  ADS  Google Scholar 

  23. S. S. P. Parkin, K.-S. Moon, K. E. Pettit, D. J. Smith, R. E. Dunin-Borkowski, and M. R. McCartney, Appl. Phys. Lett. 75, 543–545 (1999).

    Article  ADS  Google Scholar 

  24. S. Cordoso, P. P. Freitas, Z. G. Zhang, P. Wei, N. Barradas, and J. C. Soares, J. Appl. Phys. 89, 6650–6652 (2001).

    Article  ADS  Google Scholar 

  25. Z. Zhang, S. Cardoso, P. P. Freitas, X. Battle, P. Wei, N. Barradas, and J. C. Soares, J. Appl. Phys. 89, 6665–6667 (2001).

    Article  ADS  Google Scholar 

  26. H. Boeve, C. Bruynseraede, J. Das, K. Dessein, G. Borghs, J. De Boeck, R. C. Sousa, L. V. Melo, and P. P. Freitas, IEEE Trans. Magnetics. 35, 2820–2825 (1999).

    Article  ADS  Google Scholar 

  27. L. Lagae, S. Stoffels, J. Das, and J. De Boeck, unpublished (2001).

    Google Scholar 

  28. S. E. Russek, J. O. Oti, S. Kaka, and E. Y. Chen, in High-speed characterization of submicrometer GMR devices, Vancouver, 1998.

    Google Scholar 

  29. W. K. Hiebert, A. Stankiewicz, and M. R. Freeman, Phys. Rev. Lett. 79, 1134–1137 (1997).

    Article  ADS  Google Scholar 

  30. M. R. Freeman, W. K. Hiebert, and A. Stankiewicz, J. Appl. Phys. 83, 6217–6222 (1998).

    Article  ADS  Google Scholar 

  31. S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi, and M. DeHerrera, IEEE Trans. Magn. 35 (1999).

    Google Scholar 

  32. R. Scheuerlein, W. Gallagher, S. S. P. Parkin, A. Lee, S. Ray, R. Robertazzi, and W. Reohr, in A 10 ns read and write non-volatile memory array using a magnetic tunnel junction and FET in each cell., San Francisco, USA, 2000, p. 128.

    Google Scholar 

  33. M. Durlam, P. Naji, M. DeHerrere, S. Tehrani, G. Kerszykowski, and K. Kyler, in Nonvolatile RAM based on magnetic tunnel junction elements., San Francisco, USA, 2000, p. 130.

    Google Scholar 

  34. K.-M. H. Lenssen, G. J. M. Dormans, and R. Cuppens, in Expectations of MRAM in comparison with other non-volatile memory technologies, Arlington V.A., U.S.A., 2000.

    Google Scholar 

  35. D. R. Baselt, G. U. Lee, M. Natesan, S. W. Metzger, P. E. Sheehan, and r.J. Colton, Biosensors and Bioelectronics 13, 731–739 (1998).

    Article  Google Scholar 

  36. L. Lagae, R. Wirix-Speetjens, J. Das, D. Graham, P. P. Freitas, G. Borghs, and J. De Boeck, J. Appl. Phys. to be published (2001).

    Google Scholar 

  37. J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313–4316 (1998).

    Article  ADS  Google Scholar 

  38. I. Malajovich, J. M. Kikkawa, D. D. Awschalom, J. J. Berry, and N. Samarth, J. Appl. Phys. 87, 5073–5075 (2000).

    Article  ADS  Google Scholar 

  39. J. M. Kikkawa and D. D. Awschalom, Nature 397, 139–141 (1999).

    Article  ADS  Google Scholar 

  40. D. D. Awschalom and J. M. Kikkawa, Physics Today 52, 33–38 (June) (1999).

    Article  Google Scholar 

  41. D. Hagele, M. Oestreich, W. W. Ruhle, N. Nestle, and K. Eberl, Appl. Phys. Lett. 73, 1580–1582 (1998).

    Article  ADS  Google Scholar 

  42. S. Datta and B. Das, Appl. Phys. Lett. 56, 665–667 (1990).

    Article  ADS  Google Scholar 

  43. F. Meier and B. P. Zakharchenya, Optical orientation, Vol. 8 (North-Holland, Amsterdam, 1984).

    Google Scholar 

  44. S. F. Alvarado and P. Renaud, Phys. Rev. Lett. 68, 1387–1390 (1992).

    Article  ADS  Google Scholar 

  45. D. J. Monsma, J. C. Lodder, T. J. A. Popma, and B. Dieny, Phys. Rev. Lett. 74, 5260–5263 (1995).

    Article  ADS  Google Scholar 

  46. D. J. Monsma, R. Vlutters, and J. C. Lodder, Science 281, 407–409 (1998).

    Article  ADS  Google Scholar 

  47. K. Dessein, H. Boeve, P. S. A. Kumar, J. De Boeck, J. C. Lodder, L. Delaey, and G. Borghs, J. Appl. Phys. 87, 5155–5157(2000).

    Article  ADS  Google Scholar 

  48. R. Jansen, A. P. S. Kumar, O. M. J. van’t Erve, R. Vlutters, P. de Haan, and L.J.C., Phys. Rev. Lett. 85, 3277–3280 (2000).

    Article  ADS  Google Scholar 

  49. K. Dessein, A. P. S. Kumar, L. Lagae, J. De Boeck, L. Delay, and G. Borghs, J. Magn. Magn. Mat 226-230, 2081–2083(2001).

    Article  ADS  Google Scholar 

  50. A. P. S. Kumar, R. Jansen, O. M. J. Van’t-Erve, R. Vlutters, S. D. Kim, and J. C. Lodder, PhysicaC 350, 166–167 (2001).

    Article  ADS  Google Scholar 

  51. G. Lommer, F. Malcher, and U. Rössler, Phys. Rev. Lett. 60, 728–731 (1988).

    Article  ADS  Google Scholar 

  52. J. Luo, H. Munekata, F. F. Fang, and P. J. Stiles, Phys. Rev. B 38, 10142 (1988).

    ADS  Google Scholar 

  53. E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960).

    Google Scholar 

  54. Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039–6045 (1984).

    ADS  Google Scholar 

  55. M. B. M.B Stearns, J. Magn. Magn. Mat. 5, 167 (1977).

    Article  ADS  Google Scholar 

  56. W. Van Roy, J. De Boeck, B. Brijs, and G. Borghs, Appl. Phys. Lett. 77, 4190–4192 (2000).

    Article  ADS  Google Scholar 

  57. W. Van Roy, M. Wojcik, E. Jedryka, S. Nadolski, O. Richard, B. Brijs, G. Borghs, and J. De Boeck, To be presented at JEMS 01, Grenoble, France (2001).

    Google Scholar 

  58. T. Tanaka, J. Nowak, and J. S. Moodera, J. Appl. Phys. 86, 6239–6242 (1999).

    Article  ADS  Google Scholar 

  59. G.A. de Wijs and R. A. de Groot, Phys. Rev. B B64, 020402 (2001). 60Xiao and Chien, (2001).

    Google Scholar 

  60. E. I. Rashba, Phys. Rev. B 62, R16267–R16270 (2000).

    ADS  Google Scholar 

  61. G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Phys. Rev. B 62, R4790–R4793 (2000).

    ADS  Google Scholar 

  62. F. G. Monzon and M. L. Roukes, J. Magn. Magn. Mat. 198-199, 632–635 (1999).

    Article  ADS  Google Scholar 

  63. A. T. Filip, B. H. Hoving, F. J. Jedema, B. J. van Wees, B. Dutta, and G. Borghs, Phys. Rev. B 62, 9996–9999 (2000).

    ADS  Google Scholar 

  64. M. Johnson, Phys. Rev. Lett. 70,2142–2145 (1993).

    Article  ADS  Google Scholar 

  65. P. Van Sonande. al., Phys. Rev. Lett. 58, 2271 (1987).

    Article  ADS  Google Scholar 

  66. T. Valet and A. Pert, Phys. Rev. B 48, 7099 (1993).

    ADS  Google Scholar 

  67. S. F. Alvarado, Phys. Rev. Lett. 75, 513–516 (1995).

    Article  ADS  Google Scholar 

  68. C. J. Hill, X. Cartoixa, R. A. Beach, S. D.L., and T. C. McGill, Cond-Mat/0010058 (2000).

    Google Scholar 

  69. M. J. W. Prins, H. van Kempen, H. van Leuken, R. A. de Groot, W. Van Roy, and J. De Boeck, J. Phys.: Condens. Matter 7, 9447–9464 (1995).

    Article  ADS  Google Scholar 

  70. V. Motsnyi, W. Van Roy, J. Das, E. Goovaerts, G. Borghs, and J. De Boeck, in Ferromagnetic metal / tunnel barrier / semiconductor devices for optical detection of spin-polarized current injection into a semiconductor, Grenoble, France, 2001, p. (submitted).

    Google Scholar 

  71. H. J. Zhu, M Ramsteiner, H. Kostial, M. Wassermeier, H.-P. Schonherr, and P. K.H., Phys. Rev. Lett. 87, 016601 (2001).

    Article  ADS  Google Scholar 

  72. A. Hirohata, Y. B. Xu, C. M. Guertler, and J. A. C. Bland, J. Appl. Phys. 87, 1–3 (2000).

    Article  Google Scholar 

  73. V. F. Motsnyi, V. I. Safarov, J. De Boeck, J. Das, W. Van Roy, E. Goovaerts, and G. Borghs, Submitted (2001).

    Google Scholar 

  74. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature 402, 787–790 (1999).

    Article  ADS  Google Scholar 

  75. H. Bender, A. Van Esch, W. Van Roy, R. Oesterholt, J. De Boeck, and G. Borghs, in Structural characterization of lnMnAs and GaMnAs epitaxial magnetic films grown by MBE on GaAs, 1995 (IOP Publishing), p. 293–296.

    Google Scholar 

  76. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. lye, Appl. Phys. Lett. 69, 363–365 (1996).

    Article  ADS  Google Scholar 

  77. A. Van Esch, J. De Boeck, L. Van Bockstal, R. Bogaerts, F. Herlach, and G. Borghs, J. Phys. Cond. Matter 9, L361–L367(1997).

    Article  Google Scholar 

  78. F. r. r. see:, Physica E 10 (2001).

    Google Scholar 

  79. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019–1022 (2000).

    Article  ADS  Google Scholar 

  80. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature 402, 790–792 (1999).

    Article  ADS  Google Scholar 

  81. M. Tanaka and Y. Higo, J. Appl. Phys. 89, 6745–6747 (2001).

    Article  ADS  Google Scholar 

  82. Z. Liu, V. V. Moshchalkov, G. Borghs, and J. De Boeck, to be published (2001).

    Google Scholar 

  83. Z. Liu, H. Boeve, W. Van Roy, S. Nemeth, V. V. Moshchalkov, G. Borghs, and J. De Boeck, J. Cryst. Growth 227-228, 867–873 (2001).

    Article  ADS  Google Scholar 

  84. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature 408, 944–946 (2000).

    Article  ADS  Google Scholar 

  85. H. Akinaga, S. Nemeth, J. De Boeck, L. Nistor, H. Bender, G. Borghs, H. Ofuchi, and M. Oshima, Appl. Phys. Lett. 77, 4377–4379 (2000).

    Article  ADS  Google Scholar 

  86. T. Fukumura, J. Zhengwu, M. Kawasaki, T. shono, T. Hasegawa, S. Koshihara, and H. Koinuma, Appl. Phys. Lett. 78, 958–960 (2001).

    Article  ADS  Google Scholar 

  87. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.-y. Koshihara, and H. Koinuma, Science 291, 854–856 (2001).

    Article  ADS  Google Scholar 

  88. D. P. Young, D. Hall, M. E. Torelli, Z. Fisk, J. L. Sarrao, J. D. Thompson, H.-R. Ott, S. B. Oseroff, G. R.G., and R. Zysler, Nature 397 (1999).

    Google Scholar 

  89. H. J. Tromp, P. van Gelderen, P. J. Kelly, G. Brocks, and P. A. Bobbert, Phys. Rev. Lett. 87., 016401 (2001).

    Article  ADS  Google Scholar 

  90. G. A. Medvedkin, T. Ishibashi, T. Nishi, K. Hayata, Y. Hasegawa, and K. Sato, Jpn. J. Appl. Phys. 39, L949–L951 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Boeck, J. et al. (2002). The Electron Spin in Nanoelectronics. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Nanosystems. NATO Science Series, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0341-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0341-4_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0561-9

  • Online ISBN: 978-94-010-0341-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics