Skip to main content

Composite Silicon-Based Photonic Crystals as Light Emission And Sensor Elements

  • Chapter
  • 297 Accesses

Part of the book series: NATO Science Series ((NAII,volume 57))

Abstract

A new class of composite materials named photonic crystals are a potential technology for modification of the absorption spectrum of electromagnetic waves in semiconductor devices due to photonic band gap formation. The light-assisted method of n-Si electrochemical etching allows the formation of macroporous photonic crystals with a high ratio of pore depth to pore diameter and with strong periodicity. Research into photonic crystals has mainly been directed towards optical and microwave applications. However, one of the main features of the photonic band gap is the decay wave formation and the transition to Joule thermal energy. Anomalous coefficients of the light absorption due to decay wave formation allow the development novel thermal and photo detectors on the basis of macroporous silicon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, M., Pantano, CG. (1990), Structural invstigation of silica gel films by infrared spectroscopy, J. Appl. Phys. 68, 4225–4232.

    Article  ADS  Google Scholar 

  2. Anderson, R. C., Muller, R.S., Tobias, C.W. (1993), Chemical surface modification of porous silicon, J. Electrochem. Soc. 140, 1393–1396.

    Article  Google Scholar 

  3. Canham, L. T. (1990), Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57(10), 1046–1048.

    Article  ADS  Google Scholar 

  4. Cullis, G., Chanham, L. T., Williams, G. M., Smith, P. W., and Dosser, O. D. (1994), Correlationof the structure and optical properties of luminescent, highly oxidized porous silicon, J. Apple. Phys. 75, 493–501.

    Article  ADS  Google Scholar 

  5. Grunning, G.,and Lehmann, V. (1996), Fabrication of 2D infrared photonic crystals in macroporous silicon, article in Photonic Band Gap Materials, Eds. C. M. Soukoulis, Kluwer Academic Publishers, 437–444,.

    Google Scholar 

  6. Hroderic, E.H. (1978), Metal-Semiconductor Contacts, Clarendon, Oxford.

    Google Scholar 

  7. Karachevtseva, L. A., Litvinenko, O. A., Malovichko, E.A. (1998), Stabilization of Electrochemical Formation of Macropores in n-Si, J. Theor.and Experim.Chem.(Rus.) 34(5), 314–318.

    Google Scholar 

  8. Karachevtseva, LA, Lytvynenko, O.A, and Stronska, E.J. (2000), Development and optical characteristics of the macroporous silicon structures, Semiconductor Physics, Quantum Electronics & Optoelectronics 3, 22–25.

    Google Scholar 

  9. Lehmann, V., Foll, H. (1990), Formation Mechanism and Properties of Electrochemically Etched Trenches in n-Type Silicon, J. Elektrochem. Soc. 137(2), 653–659.

    Article  Google Scholar 

  10. Malyarov, V.G., Khrebtov, I.A., Kulikov, Yu.V. (1999), Comparative investigations of bolometric properties of thin-film structures based on vanadium dioxide and amorphous hydrated silicon, Applied Physics (Rus.) 2, 86–96.

    Google Scholar 

  11. Maradudin, A., McGurn, R. (1994), Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium, J. Mod. Opt. 41(2), 275–284.

    Article  ADS  Google Scholar 

  12. Petrova-Koch, V.: Muschik, T., Kux, A., Meyer, B.K., and Koch, F. (1992), Rapid thermal-oxidized porous Si. Appl. Phys. Lett. 61, 943–951.

    Article  ADS  Google Scholar 

  13. Piotrovski, J., and Dobransky, L. (1998), Micromachined thermal devices-detectors and emitters, Opto-Electronics Rev. 6, 69–78.

    Google Scholar 

  14. Prokes, S.M., and Carlos, W.E. (1995), Oxygen defect center red room temperature photoluminescence from freshly etched and oxidized porous silicon, J. Appl. Phys. 78, 2671–2674.

    Article  ADS  Google Scholar 

  15. Robertson, M., Arjavalingam, G. (1992), Measurement of photonic band structure in a two-dimensional periodic dielectric array, Phys. Rev. Lett. 68(13), 2023–2026.

    Article  ADS  Google Scholar 

  16. Rogalsky, A. (1999), Infrared Detectors, Electrocomponent Science Monographs, V.10, Gordon and Breach Publishers.

    Google Scholar 

  17. Sigalas, M.M., Bismas, R., Ho, K.M., and Soukoulis K.(1998), Theoretical investigation off-plane propagation of electromagnetic waves in two-dimensonal photonic crystals, Phys. Rev. B, 58(11), 6791–6794.

    Article  ADS  Google Scholar 

  18. Theunissen, M. I.I. (1972), Etch channel formation during anodic dissolution of n-type silicon in aqueos hydrofluoric acid, J. Electrochem.Soc. 119(3), 351–359.

    Article  Google Scholar 

  19. Tsai, C, Li, K.-H., Sarathy, J., Shin, S., and Campbell, J.C. (1991), Thermal treatment studies of the photoluminescence intensity of porous silicon”, Appl. Phys. Lett. 59, 2814–2816.

    Article  ADS  Google Scholar 

  20. Turner, D. R. (1958), Electropolish silicon in hydrofluoric acid solutions, J. Electrochem. Soc. 105(7), 402–408.

    Article  Google Scholar 

  21. Zimin, S.P. (2000), Classification of porous silicon electrical properties, Phizika i Tekhnika Poluprov. 34(3), 359–363.

    Google Scholar 

  22. Zimin, S.P. Mosquitoes E.P. (1998), Influence of a short-term annealing on conductivity of porous silicon and transient resistance of a contact aluminium-porous silicon, J. Technical Physics Letters (Russ.) 24, 45–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Karachevtseva, L.A. (2002). Composite Silicon-Based Photonic Crystals as Light Emission And Sensor Elements. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Nanosystems. NATO Science Series, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0341-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0341-4_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0561-9

  • Online ISBN: 978-94-010-0341-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics