Studies on Protein Electron Carrier Complexes Adrenodoxin Reductase - Adrenodoxin Complex in Steroid Biosynthesis

  • Sona Mardanyan
  • Yelizaveta Sargisova
Part of the NATO Science Series book series (NAII, volume 57)


Electron-transfer reactions are characteristic features of a variety of fundamental biological processes that include energy metabolism, hormone biosynthesis and xenobiotic detoxification. For the proteins, involved in these processes, the active site is comprised of a metal center (most frequently Fe) as well as of organic cofactors (flavins, quinones). The great interest directed towards understanding of the biological electron-transfer processes in recent years reflects the importance of metabolic processes in which electron transfer is involved.


Electron Transfer Aromatic Amino Acid Acceptor Center Intramolecular Electron Transfer Steroidogenic Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adman, E.T., Sicker, L.C. and Jensen, L.M. (1973) The Structure of a Bacterial Fcrredoxin J.Biol.Chem., 248, 3987–3996.Google Scholar
  2. 2.
    Armenyan, A.G., Gasparyan, V.K., Mardanyan, S.S. and Nalbandyan, R.M. (1984) The Luminescent Properties of NADPH-adienodoxin Reductase. Biokhimia (russian) 49, 1441–1448.Google Scholar
  3. 3.
    Beekert, V., Dettmer, R. and Bernhardt, R. (1994) Mutations of Tyrosine 82 in Bovine Adrcnodoxin that Affect Binding to Cytochromes P45011A1 and P45011B1 but not Electron Transfer. J.Biol.Chem., 269, 2568–2573.Google Scholar
  4. 4.
    Bernhardt, R. (1996) Cytochrome P450: Structure, Function, and Generation of Reactive Oxygen Species. Rev. Physiol. Biochem. Pharmacol. 127, 137–221.CrossRefGoogle Scholar
  5. 5.
    Burnett, R.M., Darling, G.D., Kendall, D.S, LeQuesne, E., Mayhew, S.G., Smith, W.W. and Ludwig, M.L. (1974) The Structure of the Oxidized form of Clostridial Flavodoxin at 1.9 A Resolution. J.Biol.Chem. 249, 4383–4392.Google Scholar
  6. 6.
    Carter, C.W., Knaut, J., Freer, ST., Alden, R.A. and Bartsch, R.G. (1974) Two-Angstrom Crystal Structure of Oxydized Chromatium High Potential Iron Protein. J.Biol.Chem. 249, 4212–4225.Google Scholar
  7. 7.
    Churchill, P.F., de Alvare, L.R. and Kimura, T. (1978) Topological Studies of the Steroid Hydroxylasc Complexes in Bovine Adrenocortical Mitochondria. J.Biol. Chem. 253, 4924–4929.Google Scholar
  8. 8.
    Clarke, A. (1987) Essential Tryptophan Residues in the Functions of Cellulasc from Schizophillum Commune. Biochim. Biophys. Acta 912, 424–431.CrossRefGoogle Scholar
  9. 9.
    D’Anna, J.A. and Tollin, G. (1971) Protein Fluorescence and Solvent Perturbation Spectra, as Probe of Flavin-Protein Interactions in the Shethna Flavoprotein. Biochemistry 10, 57–64.CrossRefGoogle Scholar
  10. 10.
    Debus, R.J., Barry, B.A., Sithole, I., Balcock, G.T. and McIntosh, L. (1988) Direct Mutagenesis Indicates that the Donor to P- 680 in Photosystem II is tyrosine-161 of the D, Polypeptide. Biochemistry, 27, 9071–9074.CrossRefGoogle Scholar
  11. 11.
    Edelhoch, H., (1967) Spectroscopic Determination of Tryptophan and Tyrosine in Proteins. Biochemistry 6, 1948–1954.CrossRefGoogle Scholar
  12. 12.
    Falk, M.C., Johnson, P.G and McCormick, D.B. (1976) Synthetic Flavinyl Peptides Related to the Active Site of Mitoehondrial Monoamine Oxidase. I Chemical and Spectral Properties. Biochemistry 15, 639–645.CrossRefGoogle Scholar
  13. 13.
    Farkash, Y., Timberg, R. and Orly, J. (1986) Preparation of Antiscrum to Rat Cytochrome P450 Cholesterol Side-Chain Cleavage and Its Use for Ultrastructural Localization at the Immunorcactive Enzyme by Protein A-Gold Technique. Endocrinology 118, 1353–1385.CrossRefGoogle Scholar
  14. 14.
    Greenfield, N.J., Wu, X. and Jordan, F., (1989) Proton Magnetic Resonance Spectra of Adrcnodoxin Features of the Aromatic Region. Biochim Biophys. Acta 995, 246–254.CrossRefGoogle Scholar
  15. 15.
    Hamamoto, I. and Ichikawa, Y. (1984) Modification of a Lysine Residue of Adrenodoxin-Reductase, Essential for Complex Formation with Adrenodoxin. Biochem. Biophys. Acta, 786, 32–41.CrossRefGoogle Scholar
  16. 16.
    Hamamoto, I., Kurokohchi, K., Tanaka, S. and Ichikawa, Y. (1988) Adrenoferredoxin-Binding Peptide of NADPH-Adrenoferredoxin Reductase. Biochem. Biophys. Acta, 953, 207–213.CrossRefGoogle Scholar
  17. 17.
    Hanukoglu, I. and Jefcoate, C.R (1980) Mitoehondrial Cytochrome P450. Mechanism of Electron Transport by Adrenodoxin. J.Biol. Chem. 225, 3057–3061.Google Scholar
  18. 18.
    Hanukoglu, I. and Hanukoglu, Z. (1986) Stoichiomctry of Mitoehondrial Cytochromes P450, Adrenodoxin and Adrenodoxin Reductase in Adrenal Cortex and Corpus Luteum-Implcations for Membrane Organization and Gene Regulation. Eur. J. Biochem. 157, 27–31.CrossRefGoogle Scholar
  19. 19.
    Hanukoglu, I. and Gutfinger, T. (1989) cDNA sequence of Adrenodoxin Reductase Identification of NADPH-Binding Sites in Oxidorcductases. Eur. J. Biochem. 180, 479–484.CrossRefGoogle Scholar
  20. 20.
    Hara, T. and Miyata, T. (1991) Identification of Cross-Linked Peptide of a Covalent Complex Between Adrenodoxin-Reductase and Adrcnodoxin. J. Biochem. 110, 261–266.Google Scholar
  21. 21.
    Hiwatashi, A., Ichikawa, Y., Yamano, T. and Maruya, N. (1976) Properties of Crystalline Reduced Nicotinamide Adenine Dinucleotide Phosphate-Adrenodoxin Reductase from Bovine Adrenocortical Mitochondria. II. Essential Histidyl and Cysteinyl Residues at the NADPH-Adrenodoxin Reductase. Biochemistry, 15, 3091–3097.CrossRefGoogle Scholar
  22. 22.
    Hiwatashi. A., Nishii, Y. and Ichikawa, Y. (1982) Purification of Cytochromc P450D1a(25-hydroxylation, D3-1α-hydroxylase) of bovine kidney mitochondria. Biochem. Biophys. Res. Commun. 105, 320–327.CrossRefGoogle Scholar
  23. 23.
    Inoue, M., Shibata, M., Kondo, Y. and Ishida, T. (1981) Role of Tryptophanyl and Tyrosine Residues of Flavoproteins in binding with Flavin Coenzymes. X-ray Structural Studies using Model Complexes. Biochemistry, 20, 2936–2945.CrossRefGoogle Scholar
  24. 24.
    Kamin, H., Lambeth, J.D. and Siegel, L.M. (1980) The Role of Flavins in Electron Transfer Between Two-Electron Donors and One-Electron Acceptors. In Flavins and Flavoproteins (Yagi, K and Yamano, T. Eds.) pp. 341–348, Japan Scientific Societies Press, Tokyo.Google Scholar
  25. 25.
    Lambeth, J.D., Seybert, D.W. and Kamin, H, (1980) Adrenodoxin-Reductasc-Adrenodoxin Complex. Rapid Formation and Breakdown of the Complex and a Slow Conformational Change in the Flavoprotein. J. Biol. Chetn. 255, 4667–4672.Google Scholar
  26. 26.
    Lambeth, J.D., Seybert, D.W., Lancaster, J.R., Jr., Salerno, J.C. and Kamin, H. (1982) Steroidogenic Electron Transport in Adrenal Cortex Mitochondria. Mol. Cell. Biochem. 45, 13–31.CrossRefGoogle Scholar
  27. 27.
    Mardanyan, S.S. and Sargisova, Y.G. (1995) Interaction of Flavin Adenine Dinucleotide and Tryptophan of NADPN-Adrenodoxin Reductase in Complex with Adrenodoxin. Biophysica, 40, 19–25.Google Scholar
  28. 28.
    McKenzie, R.E., Fory, W. and McCormick, D.B. (1969) Flavinyl Peptides. II. Intramolecular Interactions in Flavinyl Aromatic Amino Acid Peptides. Biochemistry 8, 1838–1844.Google Scholar
  29. 29.
    Müller, E.-C, Lapko, A., Otto, A., Müller, J.J., Ruckpaul, K. and Heineman, U. (2001) Covalently Crosslinked Complexes of Bovine Adrenodoxin with Adrenodoxin Reductase and Cytochrome P450sec. Mass Spcctrometry and Edman Degradation of Complexes of the Steroidogenic Hydroxylase System. Eur. J. Biochem. 268, 1837–1843.CrossRefGoogle Scholar
  30. 30.
    Müller, J.J., Lapko, A., Bourcnkov, G., Ruckpaul, K. and Heineman U. (2001) Adrenodoxin Reductase-Adrenodoxin Complex Structure Suggests Electron Transfer Path in Steroid Biosynthesis. J.Biol.Chem. 276, 2786–2789.CrossRefGoogle Scholar
  31. 31.
    Nisimoto, Y. and Shibata, Y. (1982) Studies on FAD-and FMN-Binding Domains in NADPH-Cytochrome P450 Reductase from Rabbit Live Microsomes. J. Biol. Chetn. 257, 12532–12539.Google Scholar
  32. 32.
    Okajima, T., Kawata, Y. and Hamaguchi, K. (1990) Chemical Modification of Tryptophan Residues and Stability Changes in Proteins. Biochemistry 29, 9168–9175.CrossRefGoogle Scholar
  33. 33.
    Omura, T., Sanders, E., Estabrook, R.W., Cooper, D.Y. and Rosenthal, O. (1966) Isolation from Adrenal Cortex of a Nonheme IronProtein and a Flavoprotein Functional as a Reduced Triphosphopyridine Nuclcotidc-Cytochromc P-450 Reductase. Archives Biochem. Biophys. 117, 660–673.CrossRefGoogle Scholar
  34. 34.
    Ryan. J. and Tollin, G. (1973) Flavin-Protein Interactions in Flavoenzymes. Effect of Chemical Modification of Tryptophan Residues upon Flavin Mononuclcotide Binding and Protein Fluorescence in Azotobacter tlavodoxin. Biochemistry 12, 4550–4554.CrossRefGoogle Scholar
  35. 35.
    Sargisova, Y.G. and Mardanyan, S.S. (1987) The role of Tryptophanyl Residues in Complex Fonnation of NADPH-Adrenodoxin Reductase with Adrenodoxin. Biokhimia (russ) 52, 1258–1262Google Scholar
  36. 36.
    Sargisova, Y.G., Mardanyan, S.S. and Haroutunian, A.V. (1990a) Significance of Trp in NADPH-Adrcnodoxin Reductase Electron Transfer to Adrenodoxin. Biological J. of Armenia 43, 778–783.Google Scholar
  37. 37.
    Sargisova, Y.G., Mardanyan, S.S. and Haroutunian, A.V. (1990b) The role of Tryptophanyl Residues in Electron Transfer from NADPH-Adrenodoxin Reductase to Adrenodoxin. Biochemistry International 22, 977–982.CrossRefGoogle Scholar
  38. 38.
    Senda, T., Yamada, T., Sakurai, N., Kubota, M., Nishizaki, T., Masai, E., Fukuda, M. and Mitsui, Y. (2000) Crystal Structure of NADPH-dependent Ferredoxin Reductase Component I Biphenyl Dioxygenase. J.Mol.Biol. 304, 397–410.CrossRefGoogle Scholar
  39. 39.
    Solish, S.B., Leonard, P., Morely, Y., Kuhn, R.W., Mohaudos, T.K., Hanukoglu, I. and Miller, W.L. (1988) Human Adrenodoxin Reductase: Two mRNAs Encoded by a Single Gene on Chromosome 17ccn-g25 Expressed in Steroidogenic Tissues. Proc.Nat. Acad.Sci. USA 85, 7104–7108.ADSCrossRefGoogle Scholar
  40. 40.
    Spande, T.P. and Witkop, B. (1967) Determination of the Tryptophan Content of Proteins with N-bromosuccinimide. Methods Enzymol. 11, 498–506.CrossRefGoogle Scholar
  41. 41.
    Strittmatter, P. (1961) The Nature of the Flavin Binding in Microsomal Cytochrome b5 Reductase. J.Biol.Chem. 236, 2329–2335.Google Scholar
  42. 42.
    Taniguchi, T. and Kimura, T. (1976) Studies of Nitrotyrosine-82 and Aminotyrosine-82 Derivatives of Adrenodoxin, Effect of Chemical Modification of the Complex Formation with Adrenodoxin Reductase. Biochemistry, 15, 2849–2853.CrossRefGoogle Scholar
  43. 43.
    Toulmc, J.J., Le Doan, T. and Helene, C. (1984) Role of Tryptophanyl Residues in the Binding of Gene 32 Protein from Phage T4 to Single-Stranded DNA. Photochemical Modification by Trichloroethanol. Biochemistry 23, 1195–1201.CrossRefGoogle Scholar
  44. 44.
    Vickery, L.E. (1998) Molecular Recognition and Electron Transfer in Mitochondrial Steroid Hydroxylase Systems. Steroids 62, 124–127.CrossRefGoogle Scholar
  45. 45.
    Waki, N., Hiwatashi, A. and Ichikawa, Y. (1986) Purification and Biochemical Characterization of Hepatic Ferredoxin (Hepatoferredoxin) from Bovine Liver Mitochondria. FEBS Lett. 195, 87–91.CrossRefGoogle Scholar
  46. 46.
    Watanabe, Y., Nishimoto, K. and Kashiwagi, H. (1982) Ab Initio MO Study of the Stacking Complexes, Flavin-Tyrosine, Flavin-Tryptophan, and Flavin-NADH. In Flavins and Flavoproteins, p 537–540.Google Scholar
  47. 47.
    Weber, G. (1960a) Fluorescence Polarization Spectrum and Electronic-Energy transfer in Tyrosine, Tryptophan and Related Compounds. Biochem. J. 75, 335–345.Google Scholar
  48. 48.
    Weber, G. (1960b) Fluorescence Polarization Spectrum and Electronic-Energy Transfer in Proteins. Biochem. J. 75, 345–352.Google Scholar
  49. 49.
    Wikvall, K. (1984) Hydroxylations in Biosynthesis of Bile Oxides. J.Biol.Chem. 259, 3800–3804.Google Scholar
  50. 50.
    Ziegler, G.A., Vonrhein, C, Hanukoglu, I. and Schulz, G.E. (1999) The Structure of Adrenodoxin Reductasc of Mitochondrial P450 Systems: Electron Transfer for Steroid Biosynthesis. J. Mol. Biol. 289, 981–990.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Sona Mardanyan
    • 1
  • Yelizaveta Sargisova
    • 1
  1. 1.H. Buniatyan Institute of Biochemistry of Armenian NASYerevanRepublic of Armenia

Personalised recommendations