Skip to main content

Studies on Protein Electron Carrier Complexes Adrenodoxin Reductase - Adrenodoxin Complex in Steroid Biosynthesis

  • Chapter
Frontiers of Multifunctional Nanosystems

Part of the book series: NATO Science Series ((NAII,volume 57))

Abstract

Electron-transfer reactions are characteristic features of a variety of fundamental biological processes that include energy metabolism, hormone biosynthesis and xenobiotic detoxification. For the proteins, involved in these processes, the active site is comprised of a metal center (most frequently Fe) as well as of organic cofactors (flavins, quinones). The great interest directed towards understanding of the biological electron-transfer processes in recent years reflects the importance of metabolic processes in which electron transfer is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adman, E.T., Sicker, L.C. and Jensen, L.M. (1973) The Structure of a Bacterial Fcrredoxin J.Biol.Chem., 248, 3987–3996.

    Google Scholar 

  2. Armenyan, A.G., Gasparyan, V.K., Mardanyan, S.S. and Nalbandyan, R.M. (1984) The Luminescent Properties of NADPH-adienodoxin Reductase. Biokhimia (russian) 49, 1441–1448.

    Google Scholar 

  3. Beekert, V., Dettmer, R. and Bernhardt, R. (1994) Mutations of Tyrosine 82 in Bovine Adrcnodoxin that Affect Binding to Cytochromes P45011A1 and P45011B1 but not Electron Transfer. J.Biol.Chem., 269, 2568–2573.

    Google Scholar 

  4. Bernhardt, R. (1996) Cytochrome P450: Structure, Function, and Generation of Reactive Oxygen Species. Rev. Physiol. Biochem. Pharmacol. 127, 137–221.

    Article  Google Scholar 

  5. Burnett, R.M., Darling, G.D., Kendall, D.S, LeQuesne, E., Mayhew, S.G., Smith, W.W. and Ludwig, M.L. (1974) The Structure of the Oxidized form of Clostridial Flavodoxin at 1.9 A Resolution. J.Biol.Chem. 249, 4383–4392.

    Google Scholar 

  6. Carter, C.W., Knaut, J., Freer, ST., Alden, R.A. and Bartsch, R.G. (1974) Two-Angstrom Crystal Structure of Oxydized Chromatium High Potential Iron Protein. J.Biol.Chem. 249, 4212–4225.

    Google Scholar 

  7. Churchill, P.F., de Alvare, L.R. and Kimura, T. (1978) Topological Studies of the Steroid Hydroxylasc Complexes in Bovine Adrenocortical Mitochondria. J.Biol. Chem. 253, 4924–4929.

    Google Scholar 

  8. Clarke, A. (1987) Essential Tryptophan Residues in the Functions of Cellulasc from Schizophillum Commune. Biochim. Biophys. Acta 912, 424–431.

    Article  Google Scholar 

  9. D’Anna, J.A. and Tollin, G. (1971) Protein Fluorescence and Solvent Perturbation Spectra, as Probe of Flavin-Protein Interactions in the Shethna Flavoprotein. Biochemistry 10, 57–64.

    Article  Google Scholar 

  10. Debus, R.J., Barry, B.A., Sithole, I., Balcock, G.T. and McIntosh, L. (1988) Direct Mutagenesis Indicates that the Donor to P- 680 in Photosystem II is tyrosine-161 of the D, Polypeptide. Biochemistry, 27, 9071–9074.

    Article  Google Scholar 

  11. Edelhoch, H., (1967) Spectroscopic Determination of Tryptophan and Tyrosine in Proteins. Biochemistry 6, 1948–1954.

    Article  Google Scholar 

  12. Falk, M.C., Johnson, P.G and McCormick, D.B. (1976) Synthetic Flavinyl Peptides Related to the Active Site of Mitoehondrial Monoamine Oxidase. I Chemical and Spectral Properties. Biochemistry 15, 639–645.

    Article  Google Scholar 

  13. Farkash, Y., Timberg, R. and Orly, J. (1986) Preparation of Antiscrum to Rat Cytochrome P450 Cholesterol Side-Chain Cleavage and Its Use for Ultrastructural Localization at the Immunorcactive Enzyme by Protein A-Gold Technique. Endocrinology 118, 1353–1385.

    Article  Google Scholar 

  14. Greenfield, N.J., Wu, X. and Jordan, F., (1989) Proton Magnetic Resonance Spectra of Adrcnodoxin Features of the Aromatic Region. Biochim Biophys. Acta 995, 246–254.

    Article  Google Scholar 

  15. Hamamoto, I. and Ichikawa, Y. (1984) Modification of a Lysine Residue of Adrenodoxin-Reductase, Essential for Complex Formation with Adrenodoxin. Biochem. Biophys. Acta, 786, 32–41.

    Article  Google Scholar 

  16. Hamamoto, I., Kurokohchi, K., Tanaka, S. and Ichikawa, Y. (1988) Adrenoferredoxin-Binding Peptide of NADPH-Adrenoferredoxin Reductase. Biochem. Biophys. Acta, 953, 207–213.

    Article  Google Scholar 

  17. Hanukoglu, I. and Jefcoate, C.R (1980) Mitoehondrial Cytochrome P450. Mechanism of Electron Transport by Adrenodoxin. J.Biol. Chem. 225, 3057–3061.

    Google Scholar 

  18. Hanukoglu, I. and Hanukoglu, Z. (1986) Stoichiomctry of Mitoehondrial Cytochromes P450, Adrenodoxin and Adrenodoxin Reductase in Adrenal Cortex and Corpus Luteum-Implcations for Membrane Organization and Gene Regulation. Eur. J. Biochem. 157, 27–31.

    Article  Google Scholar 

  19. Hanukoglu, I. and Gutfinger, T. (1989) cDNA sequence of Adrenodoxin Reductase Identification of NADPH-Binding Sites in Oxidorcductases. Eur. J. Biochem. 180, 479–484.

    Article  Google Scholar 

  20. Hara, T. and Miyata, T. (1991) Identification of Cross-Linked Peptide of a Covalent Complex Between Adrenodoxin-Reductase and Adrcnodoxin. J. Biochem. 110, 261–266.

    Google Scholar 

  21. Hiwatashi, A., Ichikawa, Y., Yamano, T. and Maruya, N. (1976) Properties of Crystalline Reduced Nicotinamide Adenine Dinucleotide Phosphate-Adrenodoxin Reductase from Bovine Adrenocortical Mitochondria. II. Essential Histidyl and Cysteinyl Residues at the NADPH-Adrenodoxin Reductase. Biochemistry, 15, 3091–3097.

    Article  Google Scholar 

  22. Hiwatashi. A., Nishii, Y. and Ichikawa, Y. (1982) Purification of Cytochromc P450D1a(25-hydroxylation, D3-1α-hydroxylase) of bovine kidney mitochondria. Biochem. Biophys. Res. Commun. 105, 320–327.

    Article  Google Scholar 

  23. Inoue, M., Shibata, M., Kondo, Y. and Ishida, T. (1981) Role of Tryptophanyl and Tyrosine Residues of Flavoproteins in binding with Flavin Coenzymes. X-ray Structural Studies using Model Complexes. Biochemistry, 20, 2936–2945.

    Article  Google Scholar 

  24. Kamin, H., Lambeth, J.D. and Siegel, L.M. (1980) The Role of Flavins in Electron Transfer Between Two-Electron Donors and One-Electron Acceptors. In Flavins and Flavoproteins (Yagi, K and Yamano, T. Eds.) pp. 341–348, Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  25. Lambeth, J.D., Seybert, D.W. and Kamin, H, (1980) Adrenodoxin-Reductasc-Adrenodoxin Complex. Rapid Formation and Breakdown of the Complex and a Slow Conformational Change in the Flavoprotein. J. Biol. Chetn. 255, 4667–4672.

    Google Scholar 

  26. Lambeth, J.D., Seybert, D.W., Lancaster, J.R., Jr., Salerno, J.C. and Kamin, H. (1982) Steroidogenic Electron Transport in Adrenal Cortex Mitochondria. Mol. Cell. Biochem. 45, 13–31.

    Article  Google Scholar 

  27. Mardanyan, S.S. and Sargisova, Y.G. (1995) Interaction of Flavin Adenine Dinucleotide and Tryptophan of NADPN-Adrenodoxin Reductase in Complex with Adrenodoxin. Biophysica, 40, 19–25.

    Google Scholar 

  28. McKenzie, R.E., Fory, W. and McCormick, D.B. (1969) Flavinyl Peptides. II. Intramolecular Interactions in Flavinyl Aromatic Amino Acid Peptides. Biochemistry 8, 1838–1844.

    Google Scholar 

  29. Müller, E.-C, Lapko, A., Otto, A., Müller, J.J., Ruckpaul, K. and Heineman, U. (2001) Covalently Crosslinked Complexes of Bovine Adrenodoxin with Adrenodoxin Reductase and Cytochrome P450sec. Mass Spcctrometry and Edman Degradation of Complexes of the Steroidogenic Hydroxylase System. Eur. J. Biochem. 268, 1837–1843.

    Article  Google Scholar 

  30. Müller, J.J., Lapko, A., Bourcnkov, G., Ruckpaul, K. and Heineman U. (2001) Adrenodoxin Reductase-Adrenodoxin Complex Structure Suggests Electron Transfer Path in Steroid Biosynthesis. J.Biol.Chem. 276, 2786–2789.

    Article  Google Scholar 

  31. Nisimoto, Y. and Shibata, Y. (1982) Studies on FAD-and FMN-Binding Domains in NADPH-Cytochrome P450 Reductase from Rabbit Live Microsomes. J. Biol. Chetn. 257, 12532–12539.

    Google Scholar 

  32. Okajima, T., Kawata, Y. and Hamaguchi, K. (1990) Chemical Modification of Tryptophan Residues and Stability Changes in Proteins. Biochemistry 29, 9168–9175.

    Article  Google Scholar 

  33. Omura, T., Sanders, E., Estabrook, R.W., Cooper, D.Y. and Rosenthal, O. (1966) Isolation from Adrenal Cortex of a Nonheme IronProtein and a Flavoprotein Functional as a Reduced Triphosphopyridine Nuclcotidc-Cytochromc P-450 Reductase. Archives Biochem. Biophys. 117, 660–673.

    Article  Google Scholar 

  34. Ryan. J. and Tollin, G. (1973) Flavin-Protein Interactions in Flavoenzymes. Effect of Chemical Modification of Tryptophan Residues upon Flavin Mononuclcotide Binding and Protein Fluorescence in Azotobacter tlavodoxin. Biochemistry 12, 4550–4554.

    Article  Google Scholar 

  35. Sargisova, Y.G. and Mardanyan, S.S. (1987) The role of Tryptophanyl Residues in Complex Fonnation of NADPH-Adrenodoxin Reductase with Adrenodoxin. Biokhimia (russ) 52, 1258–1262

    Google Scholar 

  36. Sargisova, Y.G., Mardanyan, S.S. and Haroutunian, A.V. (1990a) Significance of Trp in NADPH-Adrcnodoxin Reductase Electron Transfer to Adrenodoxin. Biological J. of Armenia 43, 778–783.

    Google Scholar 

  37. Sargisova, Y.G., Mardanyan, S.S. and Haroutunian, A.V. (1990b) The role of Tryptophanyl Residues in Electron Transfer from NADPH-Adrenodoxin Reductase to Adrenodoxin. Biochemistry International 22, 977–982.

    Article  Google Scholar 

  38. Senda, T., Yamada, T., Sakurai, N., Kubota, M., Nishizaki, T., Masai, E., Fukuda, M. and Mitsui, Y. (2000) Crystal Structure of NADPH-dependent Ferredoxin Reductase Component I Biphenyl Dioxygenase. J.Mol.Biol. 304, 397–410.

    Article  Google Scholar 

  39. Solish, S.B., Leonard, P., Morely, Y., Kuhn, R.W., Mohaudos, T.K., Hanukoglu, I. and Miller, W.L. (1988) Human Adrenodoxin Reductase: Two mRNAs Encoded by a Single Gene on Chromosome 17ccn-g25 Expressed in Steroidogenic Tissues. Proc.Nat. Acad.Sci. USA 85, 7104–7108.

    Article  ADS  Google Scholar 

  40. Spande, T.P. and Witkop, B. (1967) Determination of the Tryptophan Content of Proteins with N-bromosuccinimide. Methods Enzymol. 11, 498–506.

    Article  Google Scholar 

  41. Strittmatter, P. (1961) The Nature of the Flavin Binding in Microsomal Cytochrome b5 Reductase. J.Biol.Chem. 236, 2329–2335.

    Google Scholar 

  42. Taniguchi, T. and Kimura, T. (1976) Studies of Nitrotyrosine-82 and Aminotyrosine-82 Derivatives of Adrenodoxin, Effect of Chemical Modification of the Complex Formation with Adrenodoxin Reductase. Biochemistry, 15, 2849–2853.

    Article  Google Scholar 

  43. Toulmc, J.J., Le Doan, T. and Helene, C. (1984) Role of Tryptophanyl Residues in the Binding of Gene 32 Protein from Phage T4 to Single-Stranded DNA. Photochemical Modification by Trichloroethanol. Biochemistry 23, 1195–1201.

    Article  Google Scholar 

  44. Vickery, L.E. (1998) Molecular Recognition and Electron Transfer in Mitochondrial Steroid Hydroxylase Systems. Steroids 62, 124–127.

    Article  Google Scholar 

  45. Waki, N., Hiwatashi, A. and Ichikawa, Y. (1986) Purification and Biochemical Characterization of Hepatic Ferredoxin (Hepatoferredoxin) from Bovine Liver Mitochondria. FEBS Lett. 195, 87–91.

    Article  Google Scholar 

  46. Watanabe, Y., Nishimoto, K. and Kashiwagi, H. (1982) Ab Initio MO Study of the Stacking Complexes, Flavin-Tyrosine, Flavin-Tryptophan, and Flavin-NADH. In Flavins and Flavoproteins, p 537–540.

    Google Scholar 

  47. Weber, G. (1960a) Fluorescence Polarization Spectrum and Electronic-Energy transfer in Tyrosine, Tryptophan and Related Compounds. Biochem. J. 75, 335–345.

    Google Scholar 

  48. Weber, G. (1960b) Fluorescence Polarization Spectrum and Electronic-Energy Transfer in Proteins. Biochem. J. 75, 345–352.

    Google Scholar 

  49. Wikvall, K. (1984) Hydroxylations in Biosynthesis of Bile Oxides. J.Biol.Chem. 259, 3800–3804.

    Google Scholar 

  50. Ziegler, G.A., Vonrhein, C, Hanukoglu, I. and Schulz, G.E. (1999) The Structure of Adrenodoxin Reductasc of Mitochondrial P450 Systems: Electron Transfer for Steroid Biosynthesis. J. Mol. Biol. 289, 981–990.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mardanyan, S., Sargisova, Y. (2002). Studies on Protein Electron Carrier Complexes Adrenodoxin Reductase - Adrenodoxin Complex in Steroid Biosynthesis. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Nanosystems. NATO Science Series, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0341-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0341-4_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0561-9

  • Online ISBN: 978-94-010-0341-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics