Skip to main content

DNA Modifications by Novel Antitumor Platinum Drugs

  • Chapter
Frontiers of Multifunctional Nanosystems

Part of the book series: NATO Science Series ((NAII,volume 57))

Abstract

The development of metal-based antitumor drugs has been stimulated by the clinical success of cis-diamminedichloroplatinum(II) (cisplatin) and its analogues on one hand and by the clinical trials of other platinum complexes with activity against resistant tumors and reduced toxicity including orally available platinum drugs. Broadening the spectrum of antitumor drugs depends on understanding existing agents with a view toward developing new modes of attack. It is therefore of great interest to understand details of molecular and biochemical mechanisms underlying the biological efficacy of the platinum and other transition metal compounds. There is a large body of experimental evidence that the success of platinum complexes in killing tumor cells results from their ability to form on DNA various types of covalent adducts so that the research of DNA interactions of metal-based antitumor drugs has predominated. The results so far obtained support the view that platinum compounds which bind to DNA in a fundamentally different manner to that of “classical” cisplatin will have altered pharmacological properties. This concept has already led to the synthesis of several new unconventional platinum antitumor compounds that violate the original structure- activity relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebi, S., Fink, D., Gordon, R., Kim, H.K., Zheng, H., Fink, J.L. and Howell, S.B. (1997) Resistance to cytotoxic drugs in DNA mismatch rcpair-defieient cells. Clin. Cancer Res. 3, 1763–1767.

    Google Scholar 

  2. Allday, M.J., lnman, G.J., Crawford, D.H. and Farrell, P.J. (1995) DNA damage in human B cells can induce apoptosis, proceeding from G1/S when p53 is transactivation competent and G2/M when it is transactivation defective, EMBO J. 14, 4994–5005.

    Google Scholar 

  3. Anin, M.F. and Leng, M. (1990) Distortions induced in double-stranded oligonucleorides by the binding of cis-diamminedichloroplatinum(II) or trans-diamminedichloroplatinum(II) to the d(GTG) sequence, Nucleic Acids Res. 18, 4395–4400.

    Article  Google Scholar 

  4. Asahina, H., Kuraoka, I., Shirakawa, M., Morita, E., Miura, N., Miyamoto, I., Ohtsuka, E., Okada, Y. and Tanaka, K. (1994) The XPA protein is a zinc metalloprotein with an abilito to recognize various kinds of DNA-damage, Mutat. Res. 315, 229–237.

    Article  Google Scholar 

  5. Balcarova, Z. and Brabec, V. (1986) DNA modified by platinum derivatives cannot adopt the A-form, Biochim. Biophys. Acta 867, 31–35.

    Article  Google Scholar 

  6. Bancroft, D.P., Lepre, C.A. and Lippard, S.J. (1990) Pt-195 NMR kinetic and mechanistic studies of cu-diammincdichloroplatinum and trans-diamminedichloroplatinum(II) binding to DNA, J. Am. Chem. Soc. 112, 6860–6871.

    Article  Google Scholar 

  7. Beck, D.J. and Brubaker, R.R. (1973) Effect of cis-platinum(Il)diamminodichloride on wild type and deoxyribonucleic acid repair-deficient mutants of Escherichia coli, J. Bacteriol. 116, 1247–1252.

    Google Scholar 

  8. Beck, D.J.. Popoff, S., Sancar, A. and Rupp, W.D. (1985) Reactions of the UVRABC excision nuclease with DNA damaged by diamminedichloroplatinum(II), Nucleic Acids Res. 13, 7395–7412.

    Article  Google Scholar 

  9. Bellon. S.F. and Lippard, S.J. (1990) Bending studies of DNA site-specifically modified by cisplatin, trans-diamminedichloroplatinum(ll) and cis-Pt(NH3)2(N3-cytosine)Cl-;, Biophys. Chem. 35, 179–188.

    Article  Google Scholar 

  10. Boudvillain, M., Dalbies, R., Aussouid, C. and Leng, M. (1995) IntraStrand cross-links are not formed in the reaction between transplatin and native DNA: Relation with the clinical inefficiency of transplatin, Nucleic Acids Res. 23, 2381–2388.

    Article  Google Scholar 

  11. Brabec, V. (2000) Chemistry and structural biology of 1,2-interstrand adducts of cisplatin, in Platinum-Based Drugs in Cancer Therapy (L.R. Kelland and N.P. Farrell, eds.), pp. 37–61, Humana Press Inc, Totowa/NJ.

    Chapter  Google Scholar 

  12. Brabec, V., Boudny, V. and Balcarova, Z. (1994) Monofunctional adducts of platinum(II) produce in DNA a sequence-dependent local dcnaturation, Biochemistry 32, 1316–1322.

    Article  Google Scholar 

  13. Brabix, V., Kleinwächtcr, V., Butour, J.L. and Johnson, N.P. (1990) Biophysical studies of the modification of DNA by antitumour platinum coordination complexes, Biophys. Chem. 35, 129–141.

    Article  Google Scholar 

  14. Brabec, V. and Leng, M. (1993) DNA interStrand cross-links of trans-diamminedichloroplatinum(II) are preferentially formed between guanine and complementary cytosine residues, Proc. Natl. Acad. Sci. USA 90, 5345–5349.

    Article  ADS  Google Scholar 

  15. Brabec, V., Reedijk, J. and Leng, M. (1992) Sequence-dependent distortions induced in DNA by monofunctional platinum(II) binding. Biochemistry 31, 12397–12402.

    Article  Google Scholar 

  16. Brabec, V., Sip, M. and Leng, M. (1993) DNA conformattonal distortion produced by site-specific intcrstrand cross-link of trans-diammincdichloroplatinum(II), Biochemistry 32, 11676–11681.

    Article  Google Scholar 

  17. Brouwcr, J., Van de Putte, P., Fichtingcr-Schepman, A.M.J. and Reedijk, J. (1981) Base-pair substitution hotspots in GAG and GCG nuelcotidc sequences in E.coli K-12 induced by cis-diamminedichloroplatinumdl), Proc. Natl. Acad. Sci. USA 78, 7010–7014.

    Article  ADS  Google Scholar 

  18. Bumouf, D., Daunc, M and Fuchs, R.P. (1987) Spectrum of cisplatin-induccd mutations in Escherichia coli, Proc. Natl. Acad. Sci. USA 84, 3758–37

    Article  ADS  Google Scholar 

  19. Bustin, M. and Reeves, R. (1996) High-mobility-group chromosomal proteins: Architectural components that facilitate chromatin function, Prog. Nucleic Acid Res. Mol. Biol. 54, 35–100.

    Article  Google Scholar 

  20. Calsou, P., Frit, P. and Salles, B. (1992) Repair synthesis by human cell extracts in cisplatin-damaged DNA is prefentially determined by minor adducts, Nucleic Acids Res. 20, 6363–6368.

    Article  Google Scholar 

  21. Ciccarelli, R.B., Solomon, M.J., Varshavsky, A. and Lippard, S.J. (1985) In vivo effects of cis-and trans-diamminedichloroplatinum(II) on SV 40 chromosomes: Differential repair, DNA-protein cross-linking, and inhibition of replication, Biochemistry 24, 7533–7540.

    Article  Google Scholar 

  22. Clugston, C.K., McLaughlin, K., Kenny, M.K. and Brown, R. (1992) Binding of human single-stranded-DNA binding-protein to DNA damaged by the anticancer drug cis-diamminediehloroplarinum(II), Cancer Res. 52, 6375–6379.

    Google Scholar 

  23. Cohen, S.M., Jamieson, E.R. and Lippard, S.J. (2000a) Enhanced binding of the TATA-binding protein to TATA boxes containing flanking cisplatin 1,2-cross-links, Biochemistry 39, 8259–8265.

    Article  Google Scholar 

  24. Cohen, S.M., Mikata, Y., He, Q. and Lippard, S.J. (2000b) HMG-Domain protein recognition of cisplatin 1,2-intrastrand d(GpG) cross-links in purinc-rich sequence contexts, Biochemistry 39, 11771–11776.

    Article  Google Scholar 

  25. Coin, F., Frit, P., Viollct, B., Salles, B. and Egly, J.M. (1998) TATA binding protein discriminates between different lesions on DNA, resulting in a transcription decrease, Mol. Cell. Biol. 18, 3907–3914.

    Google Scholar 

  26. Coluccia, M., Nassii, F., Loseto, F., Boccarelli, A., MarigiO, M.A., Giordano, D., Intini, F.P., Caputo, P. and Natile, G. (1993) A /rani-platinum complex showing higher antitumor activity than the cis congeners, J. Med. Chem. 36, 510–512.

    Article  Google Scholar 

  27. Comess, K.M., Burstyn, J.N., Essigmann, J.M. and Lippard, S.J. (1992) Replication inhibition and translesion synthesis on templates containing site-specifically placed cis-diamminedichloroplatinum(II) DNA adducts, Biochemistry 31, 3975–3990.

    Article  Google Scholar 

  28. Corda, Y., Anin, M.F., Leng, M. and Job, D. (1992) RNA polymerases react differently at d(ApG) and d(GpG) adducts in DNA modified by cis-diamminedichloroplatinum(II), Biochemistry 31, 1904–1908.

    Article  Google Scholar 

  29. Corda, Y., Job, C, Anin, M.F., Leng, M. and Job, D. (1991) Transcription by eucaryotic and procaryotic RNA polymerases of DNA modified at a d(GG) or a d(AG) site by the antitumor drug cis-diammincdichloroplatinum(II), Biochemistry 30, 222–230.

    Article  Google Scholar 

  30. Corda, Y., Job, C, Anin, M.-F., Leng, M. and Job, D. (1993) Spectrum of DNA-platinum adduct recognition by prokaryotic and eukaryotic DNA-dcpcndcnt RNA polymerases, Biochemistry 32, 8582–8588.

    Article  Google Scholar 

  31. Costc, F., Malinge, J.M., Serre, L., Shepard, W., Roth, M., Leng, M. and Zelwer, C. (1999) Crystal structure of a double-stranded DNA containing a cisplatin interStrand cross-link at 1.63 A resolution: hydration at the platinated site, Nucleic Acids Res. 27, 1837–1846.

    Article  Google Scholar 

  32. Cullinane, C, Mazur, S.J., Essigmann, J.M., Phillips, D.R. and Bohr, V.A. (1999) Inhibition of RNA polymerase II transcription in human cell extracts by cisplatin DNA damage, Biochemistry 38, 6204–6212.

    Article  Google Scholar 

  33. Dijt, F.J., Fichtinger-Schepman, A.M.J., Berends, F. and Reedijk, J. (1988) Formation and repair of cisplatin-induced adduets to DNA in cultured normal and repair-deficient human fibroblasts. Cancer Res. 48, 6058–6062.

    Google Scholar 

  34. Drummond, J.T., Anthoncy, A., Brown, R. and Modrieh, P. (1996) Cisplatin and adriamycin resistance arc associated with MutL alpha and mismatch repair deficiency in an ovarian tumor cell line, J. Biol. Chem. 271, 19645–19648.

    Article  Google Scholar 

  35. Duckctt, D.R., Drummond, J.T., Murchie, A.I.H., Reardon, J.T., Sancar, A., Lilley, D.M. and Modrich, P. (1996) Human MutSa recognizes damaged DNA base pairs containing O6-methylguanine, O4-methylthyminc, or the cisplatin-d(GpG) adduct, Proc. Natl. Acad. Sci. USA 93, 6443–6447.

    Article  ADS  Google Scholar 

  36. Dunham, S.U. and Lippard, S.J. (1997) DNA sequence context and protein composition modulate HMG-domain protein recognition of ciplatin-modified DNA, Biochemistry 36, 11428–11436.

    Article  Google Scholar 

  37. Eastman, A. (1987) The formation, isolation and characterization of DNA adduets produced by anticancer platinum complexes, Pharmacol. Ther. 34, 155–166.

    Article  Google Scholar 

  38. Eastman, A., Jennerwein, M.M. and Nagel, D.L. (1988) Characterization of bifunctional adducts produced in DNA by trans-diamminedichloroplatinum(II), Chem.-Biol. Interactions 67, 71–80.

    Article  Google Scholar 

  39. Farrell. N. (2000) Polynuclear charged platinum compounds as a new class of anticancer agents: Toward a new paradigm, in Platinum-Based Drugs in Cancer Therapy (L.R. Kclland and N.P. Farrell, cds.), pp. 321–338.

    Google Scholar 

  40. Farrell, N., Qu, Y., Bierbach, U., Valsecchi, M. and Menta, E. (1999) Structure-activity relationship within di-and trinuclcar platinum phase I clinical agents, in Cisplatin. Chemistry and biochemistry of a leading anticancer drug (B. Lippert, B. ed.), pp. 479–496, VHCA, WILEY-VCH, Zurich, Weinhcim.

    Google Scholar 

  41. Ferry, K.V., Fink, D., Johnson, S.W., Ncbel, S., Hamilton, T.C. and Howell, S.B. (1999) Decreased cisplatin damage-dependent DNA synthesis in cellular extracts of mismatch repair deficient cells, Biochem. Pharmacol 57, 861–867.

    Article  Google Scholar 

  42. Fichtinger-Schepinan, A.M.J., Van der Veer, J.L., Den Hartog, J.H.J., Lohman, P.H.M. and Reedijk, J. (1985) Adduets of the antitumor drug cis-diamminedichloroplatinuni(II) with DNA: Formation, identification, and quantitation. Biochemistry 24, 707–713.

    Article  Google Scholar 

  43. Fink, D, Nebel, S., Aebi, S., Nehme, A. and Howell, S.B. (1997) Loss of DNA mismatch repair due to knockout of MSH2 or PMS2 results in resistance to cisplatin and carboplatin, Int. J. Oncol. 11, 539–542.

    Google Scholar 

  44. Fink, D., Nebel, S., Aebi, S., Zheng, H., Cenni, B., Nehme, A., Christen, R.D. and Howell, SB. (1996) The role of DNA mismatch repair in platinum drug resistance, Cancer Res. 56, 4881–4886.

    Google Scholar 

  45. Fujiwara, Y., Tatsumi, M. and Sasaki, M.S. (1977) Cross-link repair in human cells and its possible defect in Fanconi’s anemia cells, J. Mol. Biol. 113, 635–649.

    Article  Google Scholar 

  46. Gelasco, A. and Lippard, S.J. (1999) Anticancer activity of cisplatin and related complexes, in Metallopharmaceuticals I. DNA interactionsl. (M.J. Clarke and P.J. Sadler, P.J. cds.), pp. 1–43, Springer, Berlin.

    Chapter  Google Scholar 

  47. Giaccone, G. (2000) Clinical perspectives on platinum resistance, Drugs 59, 9–17.

    Article  Google Scholar 

  48. Gonzalez, V.M., Fuertes, M.A., Aionso, C. and Perez, J.M. (2001) Is cisplatin-induced cell death always produced by apoptosis?, Mol. Pharmacol. 59, 657–663.

    Google Scholar 

  49. Guo, Z.J. and Sadler, P.J. (1999) Metals in medicine, Angew. Chem. Int. Ed. 38, 1513–1531.

    Google Scholar 

  50. Hey, T., Lipps, G. and Krauss, G. (2001) Binding of XPA and RPA to damaged DNA investigated by fluorescence anisotrophy, Biochemistry 40, 2901–2910.

    Article  Google Scholar 

  51. Hofr, C, Farrell, N. and Brabec, V. (2001) Thermodynamic properties of duplex DNA containing a site-specific d(GpG) intrastrand crosslink formed by an antitumor dinuclear platinum complex, Nucleic Acids Res. 29, 2034–2040.

    Article  Google Scholar 

  52. Huang, H.F., Zhu, L.M., Reid, B.R., Drobny, G.P. and Hopkins, P.B. (1995) Solution structure of a cisplatin-induced DNA interStrand cross-link, Science 270, 1842–1845.

    Article  ADS  Google Scholar 

  53. Chu, G. (1994) Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair, J. Biol. Chem. 269, 787–790.

    Google Scholar 

  54. Ise, T., Nagatani, G., Imamura, T., Kato, K., Takano, H., Nomoto, M., Izumi, H., Ohmori, H., Okamoto, T., Ohga, T., Uchiumi, T., Kuwano, M. and Kohno, K. (1999) Transcription factor Y-box binding protein 1 binds preferentially to cisplatin-modified DNA and interacts with proliferating cell nuclear antigen. Cancer Res. 59, 342–346.

    Google Scholar 

  55. Jamieson, E.R., Jacobson, M.P., Barnes, CM.. Chow, C.S. and Lippard, S.J. (1999) Structural and kinetic studies of a cisplatin-modified DNA icosamer binding to HMGI domain B, J. Biol. Chem. 274, 12346–12354.

    Article  Google Scholar 

  56. Jamieson, E.R. and Lippard, S.J. (1999) Structure, recognition, and processing of cisplatin-DNA adducts, Chem. Rev. 99, 2467–2498.

    Article  Google Scholar 

  57. Janovska, E. and Kleinwächter, V. (1986) Inactivation effect of platinum(ll) compounds on strains of Escherichia coli, Studio Biophysica 114, 187–192.

    Google Scholar 

  58. Johnson, N.P., Butour, J.-L, Villani, G., Wimmer, F.L., Défais, M., Pierson, V. and Brabec, V. (1989) Metal antitumor compounds: The mechanism of action of platinum complexes, Prog. Clin. Biochem. Mud. 10, 1–24.

    Article  Google Scholar 

  59. Johnson, N.P., Macquet, J.-P., Wiebcrs, J.L. and Monsarrat, B. (1982) Structures of adducts formed between [Pt(dien)Cl]Cl and DNA in vitro, Nucleic Acids Res. 10, 5255–5271.

    Article  Google Scholar 

  60. Johnson, S.W., Ferry, K.V. and Hamilton, T.C. (1998) Recent insights into platinum drug resistance in cancer, Drug Resistance Updates 1, 243–254.

    Article  Google Scholar 

  61. Jones, CJ. and Wood, R.D. (1993) Preferential binding of the Xcroderma Pigmcntosum group A complementing protein to damaged DNA, Biochemistry 32, 12096–12104.

    Article  Google Scholar 

  62. Jordan, P. and Carmo-Fonseca, M. (1998) Cisplatin inhibits synthesis of ribosomal RNA in vivo, Nucleic Acids Res. 26, 2831–2836.

    Article  Google Scholar 

  63. Jordan, P. and Carmo-Fonseca, M. (2000) Molecular mechanisms involved in cisplatin cytotoxicity, Cell. Mol. Life Sci. 57, 1229–1235.

    Article  Google Scholar 

  64. Kasparkova, J. and Brabec, V. (1995) Recognition of DNA interstrand cross-links of cis-diamminedichloroplatinum(ll) and its trans isomer by DNA-binding proteins, Biochemistry 34, 12379–12387.

    Article  Google Scholar 

  65. Kasparkova, J., Pospisilova, S. and Brabec, V. (2001) Different recognition of DNA modified by antitumor cisplatin and its clinically ineffective trans isomer by tumor suppressor protein p53, J. Biol. Chem. 276, 16064–16069.

    Article  Google Scholar 

  66. Keck, M.V. and Lippard, S J. (1992) Unwinding of supercoiled DNA by platinum ethidium and related complexes, J. Am. Chem. Soc. 114, 3386–3390.

    Article  Google Scholar 

  67. Kelland, L.R. (2000) Preclinical perspectives on platinum resistance, Drugs 59, 1–8.

    Article  Google Scholar 

  68. Kuraoka, I., Morita, E.H., Saijo, M., Matsuda, T., Morikawa, K., Shirakawa, M. and Tanaka, K. (1996) Identification of a damaged-DNA binding domain of the XPA protein, Mutai. Res. 362, 87–95.

    Article  Google Scholar 

  69. Lemaire, M.A., Schwartz, A., Rahmouni, A.R. and Leng, M. (1991) Interstrand cross-links are preferentially formed at the d(GC) sites in the reaction between cis-diamminedichloroplatinum(II) and DNA, Proc. Natl. Acad. Sci. USA 88, 1982–1985.

    Article  ADS  Google Scholar 

  70. Leng, M., Schwartz, A. and Giraud-Panis, M.J. (2000) Transplatin-modified oligonucleotides as potential antitumor drugs, in Platinum-Based Drugs in Cancer Therapy (L.R. Kell and N.P. Farrell eds.), pp. 63–85, Humana Press Inc, Totowa/NJ.

    Chapter  Google Scholar 

  71. Malinge, J.-M. and Leng, M. (1999) Interstrand cross-links in cisplatin or transplatin-modified DNA, in Cisplatin. Chemistry and Biochemistry of a Leading Anticancer Drug (B. Lippert ed.), pp. 1589–180, Verlag Helvetica Chimica Acta, Wiley-VCH, Zürich,Weinheim.

    Google Scholar 

  72. Mello, J.A., Acharya, S., Fishel, R. and Essigmann, J.M. (1996) The mismatch-repair protein hMSH2 binds selectively to DNA adducts of the anticancer drug cisplatin, Chem. & Biol. 3, 579–589.

    Article  Google Scholar 

  73. Mello, J.A., Lippard, S.J. and Essigmann, J.M. (1995) DNA adducts of cis-diamminedichloroplatinum(II) and its trans isomer inhibit RNA polymerasc II differentially in vivo, Biochemistry 34, 14783–14791.

    Article  Google Scholar 

  74. Missura. M., Buterin, T., Hindges, R., Hübscher, U., Kasparkova, J., Brabec, V. and Naegeli, H. (2001) Double-check probing of DNA bending and unwinding by XPA-RPA; an architectural function in DNA repair, EMBO. J. 20, 3554–3564.

    Article  Google Scholar 

  75. Murchie, A.I.H. and Lilley, D.M.J. (1993) T4 endonuclease VII cleaves DNA containing a cisplatin adduct, J. Mol. Biol. 233, 77–82.

    Article  Google Scholar 

  76. Murray, V., Motyka, H., England, P.R., Wickham, G., Lee, H.H., Denny, W.A. and McFadyen, W.D. (1992a) An investigation of the sequence-specific interaction of cis-diamminedichloroplatinum(II) and four analogues, including two acridine-tethered complexes, with DNA inside human cells, Biochemistry 31, 11812–11817.

    Article  Google Scholar 

  77. Murray, V., Motyka, H., England, P.R., Wickham, G., Lee, H.H., Denny, W.A. and McFadyen, W.D. (1992b) The use of Taq DNA polymcrase to determine the sequence specificity of DNA damage caused by cis-diamminedichloroplatinum(II), acridinc-tcthcred platinum(II) diammine complexes or 2 analogues, J. Biol. Chem. 267. 18805–18809.

    Google Scholar 

  78. Murray, V., Whittakcr, J., Temple, M.D. and McFadyen, W.D. (1997) Interaction of 11 cisplatin analogues with DNA: characteristic pattern of damage with monofunctional analogues, Biochim. Biophys. Acta 1354, 261–271.

    Article  Google Scholar 

  79. Mymryk, J., Zaniewski, E. and Archer, T. (1995) Cisplatin inhibits chromatin remodeling, transcription factor binding, and transcription from the mouse mammary tumor virus promoter in vivo, Proc. Natl. Acad. Sci. USA 92, 2076–2080.

    Article  ADS  Google Scholar 

  80. O’Connor, P.M., Jackman, J., Bae, I., Myers, T.G., Fan, S., Mutoh, M., Scudiero, D.A., Monks, A., Sausville, E.A., Weinstein, J.N., Friend, S., Fornace, A.J. and Kohn, K.W. (1997) Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents, Cancer Res. 57, 4285–4300.

    Google Scholar 

  81. O’Dwyer, P.J., Stevenson, J.P. and Johnson, S.W. (1999) Clinical status of cisplatin, carboplatin, and other platinum-based antitumor drugs, in Cisplatin. Chemistry and Biochemistry of a Leading Anticancer Drug (B. Lippert ed.), pp. 31–72, VHCA, WILEY-VCH, Zürich, Weinheim.

    Google Scholar 

  82. Ohga, T., Koike, K., Ono, M., Makino, Y., Itagaki, Y., Tanimoto, M., Kuwano, M. and Kohno, K. (1996) Role of the human Y box-binding protein YB-1 in cellular sensitivity to the DNA-damaging agents cisplatin, mitomycin C, and ultraviolet light. Cancer Res. 56, 4224–4228.

    Google Scholar 

  83. Ohndorf, U.M., Rould, M.A., He, Q., Pabo, CO. and Lippard, S.J. (1999) Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins, Nature 399, 708–712.

    Article  ADS  Google Scholar 

  84. Orphanides, G., Lagrange, T. and Reinberg, D. (1996) The general transcription factors of RNA polymerase II, Genes Dev. 10, 2657–2683.

    Article  Google Scholar 

  85. Özer, Z., Reardon, J.T., Hsu, D.S., Malhotra, K. and Sancar, A. (1995) The other function of DNA photolyase: Stimulation of excision repair of chemical damage to DNA, Biochemistry 34, 15886–15889.

    Article  Google Scholar 

  86. Paneva, E.G., Spassovska, N.C., Grancharov, K.C., Zlatanova, J.S. and Yaneva, J.N. (1998) Interaction of histonc H1 with cis-platinum modified DNA, Z. Naturforsch. 53c, 135–138.

    Google Scholar 

  87. Paquet. F., Boudvillain, M., Lancelot, G. and Leng, M. (1999) NMR solution structure of a DNA dodecamer containing a transplatin interStrand GN7-CN3 cross-link, Nucleic Acids Res. 27, 4261–4268.

    Article  Google Scholar 

  88. Patrick, S.M. and Turchi, J.J. (1998) Human replication protein a preferentially binds cisplatin-damagcd duplex DNA in vitro, Biochemistry 37, 8808–8815.

    Article  Google Scholar 

  89. Patrick, S.M. and Turchi, J.J. (1999) Replication protein A (RPA) binding to duplex cisplatin-damaged DNA is mediated through the generation of single-stranded DNA, J. Biol. Chem. 274, 14972–14978.

    Article  Google Scholar 

  90. Pilch, D.S., Dunham, S.U., Jamieson, E.R., Lippard, S.J. and Dreslauer, K.J. (2000) DNA sequence context modulates the impact of a cisplatin l,2-d(GpG) intraStrand cross-link an the conformational and thermodynamic properties of duplex DNA, J. Mol. Biol. 296, 803–812.

    Article  Google Scholar 

  91. Pinto, A.L. and Lippard, S.J. (1985) Sequence-dependent termination of in vitro DNA synthesis by cis-and trans-diamminedichloroplatinum(II), Proc. Nail. Acad. Sci. USA 82, 4616–4620.

    Article  ADS  Google Scholar 

  92. Plooy, A.C.M., Van Dijk, M., Berends, F. and Lohman, P.H.M. (1985) Formation and repair of DNA interstrand cross-links in relation to cytotoxicity and unscheduled DNA synthesis induced in control and mutant human cells treated with cis-diamminedichloroplatinum(II), Cancer Res. 45, 4178–4184.

    Google Scholar 

  93. Reedijk, J. (1996) Improved understanding in platinum antitumour chemistry, Chem. Commun., 801–806.

    Google Scholar 

  94. Riva, CM. (2000) Restoration of wild-type p53 activity enhances the sensitivity of pleural metastasis to cisplatin through an apoptotic mechanism, Anticancer Res. 20, 4463–4471.

    Google Scholar 

  95. Rosenberg, B., Van Camp, L., Trosko, J.E. and Mansour, V.H. (1969) Platinum compounds: A new class of potent antitumor agents, Nature 222, 385–386.

    Article  ADS  Google Scholar 

  96. Sorenson, C.M. and Eastman, A. (1988) Mechanism of cis-diamminedichtoroplatinum(II)-induced cytotoxicity-Role of G2 arrest and DNA double-strand breaks, Cancer Res. 48, 4484–4488.

    Google Scholar 

  97. Stros, M. (2001) Two mutations of basic residues within the N-tcrminus of HMG-1 B domain with different effects on DNA supereoiling and binding to bent DNA, Biochemistry 40, 4769–4779.

    Article  Google Scholar 

  98. Teuben, J.M., Bauer, C, Wang, A.H.J. and Reedijk, J. (1999) Solution structure of a DNA duplex containing a cis-diamrnineplatrnum(II) 1,3-d(GTG) intrastrand cross-link, a major adduct in cells treated with the anticancer drug carboplatin, Biochemistry 38, 12305–12312.

    Article  Google Scholar 

  99. Thomas. J.O. and Travers, A.A. (2001) HMG1 and 2, and related “architectural” DNA-binding proteins, TIBS 26, 167–174.

    Google Scholar 

  100. Turchi, J.J. and Henkels, K. (1996) Human Ku autoantigen binds cisplatin-damaged DNA but fails to stimulate human DNA-activated protein kinase, J. Biol. Chem. 271, 13861–13867.

    Article  Google Scholar 

  101. Turchi, J.J., Henkels, K.M., Hcrmanson, I.L. and Patrick, S.M. (1999) Interactions of mammalian proteins with cisplatin-damaged DNA, J. Inorg. Biochem. 77, 83–87.

    Article  Google Scholar 

  102. Turchi, J.J., Henkels, K.M. and Zhou, Y. (2000) Cisplatin-DNA adducts inhibit translocation of the Ku subunits of DNA-PK, Nucleic Acids Res. 28, 4634–4641.

    Article  Google Scholar 

  103. Van Garderen, C.J., Van den Elst, H., Van Boom, J.H., Reedijk, J. and Van Houte, L.P.A. (1989) A double-stranded DNA fragment shows a significant decrease in double-helix stability after binding of monofunctional platinum amine compounds, J. Am. Chem. Soc. 111, 4123–4125.

    Article  Google Scholar 

  104. Vichi. P., Coin, F., Renaud, J.P., Vermeulen, W., Hoeijmakers, J.H.J., Moras, D. and Egly, J.M. (1997) Cisplatin-and UV-damaged DNA lure the basal transcription factor TFI1D/TBP, EMBO J. 16, 7444–7456.

    Article  Google Scholar 

  105. Villani, Ci., Hubscher, U. and Butour, J.-L. (1988) Sites of termination of in vitro DNA synthesis on cis-diammincdichloroplatinum(II) treated single-stranded DNA: a comparison between E. coli DNA polymerase 1 and eucaryotic DNA polymcrases alpha, Nucleic Acids Res. 16, 4407–4418.

    Article  Google Scholar 

  106. Viliani, G., Le Gac, N.T. and Hoffmann, J.-S. (1999) Replication of platinatcd DNA and its mutagenic consequences, in Cisplatin. Chemistry and biochemistry of a leading anticancer drug (B. Lippert, ed.), pp. 135–157, VHCA, Wilcy-CH, Zürich, Weinheim.

    Google Scholar 

  107. Vrana, O., Boudny, V. and Brabec, V. (1996) Superhelical torsion controls DNA interStrand cross-linking by antitumor cis-diamminedichloroplatinum(II), Nucleic Acids Res. 24, 3918–3925.

    Article  Google Scholar 

  108. Wong, E. and Giandomenico, C.M. (1999) Current status of platinum-based antitumor drugs, Chem. Rev. 99, 2451–2466.

    Article  Google Scholar 

  109. Xu, N.X., Pasa-Tolic, L., Smith, R.D., Ni, S.S. and Thrall, B.D. (1999) Electrospray ionization-mass spectrometry study of the interaction of cisplatin-adducted oligonucleotides with human XPA minimal binding domain protein. Anal. Biochem. 272, 26–33.

    Article  Google Scholar 

  110. Yamada, M., O’Regan, E., Brown, R. and Karran, P. (1997) Selective recognition of a cisplatin-DNA adduct by human mismatch repair proteins. Nucleic Acids Res. 25, 491–495.

    Article  Google Scholar 

  111. Yaneva, J., Leuba, S.H., van Holdo, K. and Zlatanova, J. (1997) The major ehromatin protein histone H1 binds preferentially to cis-platinum-damaged DNA, Proc. Natl. Acad. Sci. USA 94, 13448–13451.

    Article  ADS  Google Scholar 

  112. Yarema, K.J., Lippard, S.J. and Essigmann, J.M. (1995) Mutagenic and genotoxic effects of DNA adducts formed by the anticancer drug cis-diammincdichloroplatinum(II), Nucleic Acids Res. 23, 4066–4072.

    Article  Google Scholar 

  113. Zamble, D.B. and Lippard, S.J. (1999) The response of cellular proteins to cisplatin-damaged DNA, in Cisplatin. Chemistry and biochemistry of a leading anticancer drug (B. Lippert, ed.), pp. 73–110, VHCA, W1LEY-VCH, Zürich, Weinheim.

    Google Scholar 

  114. Zamble, D.B., Mu, D., Reardon, J.T., Sancar, A. and Lippard, S.J. (1996) Repair of cisplatin-DNA adducts by the mammalian excision nuclease, Biochemistry 35, 10004–10013.

    Article  Google Scholar 

  115. Zlatanova, J. and van Holde, K. (1996) The linker histones and chroinatin structure: New twists, Prog. Nucleic Acid Res. Mol. Biol. 52, 217–259.

    Article  Google Scholar 

  116. Zlatanova, J. and Van Holde, K. (1998) Binding to four-way junction DNA: A common property of architectural proteins?, FASEB J. 12, 421–431.

    Google Scholar 

  117. Zlatanova, J., Yaneva, J. and Leuba, S.H. (1998) Proteins that specifically recognize cisplatin-damaged DNA: a clue to anticancer activity of cisplatin, FASEB J. 12, 791–799.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brabec, V. (2002). DNA Modifications by Novel Antitumor Platinum Drugs. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Nanosystems. NATO Science Series, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0341-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0341-4_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0561-9

  • Online ISBN: 978-94-010-0341-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics