Skip to main content

Non-thermal Plasma Synthesis of Nanocarbons

  • Chapter
Frontiers of Multifunctional Nanosystems

Part of the book series: NATO Science Series ((NAII,volume 57))

  • 304 Accesses

Abstract

Non-thermal plasma application for the synthesis of customized carbon nanotubes (CNTs) is reviewed. Carbonaceous nanostructures were deposited via a dielectric barrier discharge chemical vapor deposition using various mixtures of plasma gases and carbon-bearing reactants. Aligned carbon nanofibers/tubes (20–50 nm in diameter) were generated by hollow cathode glow discharge plasma decomposition of ferrocene in helium atmosphere on an alumina membrane. The average temperature in the reaction zone, determined by the optical emission spectroscopy, was below 200 °C. The as- deposited product consists of bundles of amorphous carbon nanofibers. Heating at 1100 °C under Ar produced well-crystallized carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anisimova, I.A., Anisimov, V.P., Makarov, V.P. and Otorbaev, D.K. (1998), High Temp. Mat. Proc. 2, 143.

    Google Scholar 

  2. Bolt, H., Hemel, V., Koch, F., Nickel, H., Wiechers, C. and Avni, R. (1996), Surf. Coat. Technol. 88, 50.

    Article  Google Scholar 

  3. Bower, C, Zhou, O., Zhu, W., Werder DJ. and Jin, S. (2000), Appl. Phys. Lett. 77,2767.

    Article  ADS  Google Scholar 

  4. Buuron, A., Koch, F. and Nöthc, M. and Bolt, H. (1999), Surf. Coat. Technol. 116–119, 755.

    Google Scholar 

  5. Choi, Y.C., Bac, DJ., Lee, Y.H., Lee, B.S., Han, I.T., Choi, W.B., Lee, N.S. and Kim, J.M. (2000), Synthetic Metals 108, 159.

    Article  Google Scholar 

  6. Chung, S.J., Lim, S.H. and Jang, J. (2001), Thin Solid Films 383, 73.

    Article  ADS  Google Scholar 

  7. Ebbesen, T. W. and Ajayan, P. M. (1992), Nature (London) 358, 220.

    Article  ADS  Google Scholar 

  8. Ebbesen, T.W., Hiura, H., Fujita, J., Ochiai, Y., Matsui, S. and Tanigaki, K. (1993), Chem. Phys. Lett. 62,1881.

    Google Scholar 

  9. Fauchais P., ed. (2001), Progress in Plasma Processing of Materials, Begell House Inc., Now York.

    Google Scholar 

  10. Han, J.-H., Yang, W.-S., Yoo, J.-B. and Park, C.-Y. (2000) J.Appl. Phys. 88, 7363.

    Article  ADS  Google Scholar 

  11. Ho, G.W., Wee, A.T.S., Lin, J. and Tjiu, WC. (2001), Thin Solid Films 388, 73.

    Article  ADS  Google Scholar 

  12. Holland, L. and Ojha, S.M. (1976), Thin Solid Films 38, LI 7.

    Article  Google Scholar 

  13. Huang, S., Dai, L. and Mau, A.W.H. (1999), J. Phys. Chem. 103, 4223.

    Google Scholar 

  14. Huczko, A. (2001), Appl. Phys. A 73, 1.

    Article  Google Scholar 

  15. Iijima, S. (1991), Nature (London) 354, 56.

    Article  ADS  Google Scholar 

  16. Journet, C, and Bernier, P. (1998), Appl. Phys. A 67, 1.

    Article  ADS  Google Scholar 

  17. Jung, CO., Chi, K.K., Hwang, B.G., Moon, J. T., Lee, M.Y. and Lee, J.G. (1999), Thin Solid Films 341, 112.

    Article  ADS  Google Scholar 

  18. Kogclschatz, U., Eliasson, B. and Egli, W. (1999), Pure Appl. Chem. 71, 1819.

    Article  Google Scholar 

  19. Krätschmer, W., Lamb, L.D., Fostiropoulos, K. and Huffman, D.R. (1990), Nature (London) 347, 354.

    Article  ADS  Google Scholar 

  20. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F. and Smallcy, R.E. (1985), Nature (London) 318, 162.

    Article  ADS  Google Scholar 

  21. Liang, G.-T. and Hong, F.C.-N. (2000), 11th Eur. Conf. Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide, 3-8 September 2000, Porto, Portugal, Abstract Book No. 5.6.23

    Google Scholar 

  22. Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P.J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodriguez-Macias, F., Shon, Y., Lee, T.R., Colbert, D.T. and Smalley, R.E. (1998), Science 101, 1253.

    Article  ADS  Google Scholar 

  23. Marechal, C, Zeinert, A., Zellama, K, Lacaze, E., Zarrabian, M.and Turban, G. (1999) Solid State Comm. 109,23.

    Article  Google Scholar 

  24. Murakami, H., Hirakawa, M., Tanaka, C. and Yamakawa, H. (2000), Appl. Phys. Lett. 76, 1776.

    Article  ADS  Google Scholar 

  25. Obraztsov, A.N., Pavlovsky, I., Volkov, A.P., Obraztsova, E.D. and Kuznetsov, V.L. (2000), J. Vac. Sci. Technol. B 18, 1059.

    Article  Google Scholar 

  26. Okai, M., Muneyoshi, T., Yaguchi, T. and Sasaki, S. (2000) Appl. Phys. Lett. 77, 3468.

    Article  ADS  Google Scholar 

  27. Saito, Y., Hamaguchi, K., Uemura, S., Uchida, K., Tasaka, Y., Ikazaki, F., Yumura, M., Kasuya, A. and Nishina, Y. (1998), Appl. Phys. A 67, 95.

    Article  ADS  Google Scholar 

  28. Shi, F.F. (1996), Surf. Coat. Technol. 82, 1.

    Article  Google Scholar 

  29. Stark, R.H. and Schoenbach, K.H. (1999), J. Appl. Phys. 85, 2075.

    Article  ADS  Google Scholar 

  30. Terrones, M., Grobert, N., Olivares, J., Zhang, J.P., Terrones, H., Kordatos, K., Hsu, W.K., Hare, J.P., Townsend, P.D., Prassides, K., Cheetham, A.K., Kroto, H.W. and D.R.M. Walton, (1997), Nature (London) 285. 52.

    ADS  Google Scholar 

  31. Terrones, M., Hsu, W.K., Schilder, A., Terrenes, H., Grobert, N., Hare, J.P., Zhu, Y.Q., Schwoerer, M., Prassides, K., Kroto, H.W. and Walton, D.R.M. (1009) Appl. Phys. A 66. 307.

    Article  ADS  Google Scholar 

  32. Tsai, S.H., Chiang, F.K., Tsai, T.G., Shicu, F.S. and Shih, H.C. (2000), Thin Solid Films 366, 11.

    Article  ADS  Google Scholar 

  33. Wang, X., Hu, Z., Wu, Q., Chen, X. and Chen, Y. (2000), Thin Solid Films 390, 130.

    Article  Google Scholar 

  34. Zhang, Q., Yoon, S.F., Ahn, J., Rusli, B.G. and Yu, M.-B.(2000), J. Mater. Res. 15, 1749.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Huczko, A., Lange, H., Zhu, Y.Q., Hsu, W.K., Kroto, H.W., Walton, D.R.M. (2002). Non-thermal Plasma Synthesis of Nanocarbons. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Nanosystems. NATO Science Series, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0341-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0341-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0561-9

  • Online ISBN: 978-94-010-0341-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics