Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 58))

  • 430 Accesses

Abstract

This paper discusses new potentialities of oxidized porous silicon (PS) based SOI structures that have hitherto escaped attention of the researchers. Oxidized PS (OPS) has the property of controlling its characteristics depending on regimes of formation of PS layer and its further oxidation. The manner by which electrical and optical properties of the OPS layer may be varied with oxidation regimes of PS layers with various porosities is presented. It is of great importance that oxidized PS regions of different characteristics (porosity, thickness etc.) may be formed simultaneously within the same wafer.

The paper points out the meaning of oxidized PS. It is emphasized, by one way or another, that oxidized PS involves a whole series of dissimilar materials. PS may be oxidized either completely or partially and the formed POS layer will have its properties depending on both the oxidizing regimes and the parameters of initial PS. The kinetics of PS oxodation and densification, the electrical and optical parameters of the material obtained and the feasibility to dope OPS with a desirable dopant are presented.

Dopants in OPS are considered on the example of rare-earth elements.

In addition, consideration is given to the ideas of on-chip integration PS-based SOI with different PS-based micro- and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Watanabe, Y., Sakai, T. (1972) Semiconductor Device and method of producing the same. Jap. Patent 49–19030 (US Patent 3640806).

    Google Scholar 

  2. Hirosy, S., Watanabe, Y., Arita, M, Asaoka, K., (1978) Semiconductor devices. Jap. Patent Appl. 53–45675.

    Google Scholar 

  3. Sakurdi, T., Ukami, T. (1981) Method of manufacturing the semiconductor devices. Jap. Patent Appl. 52–84968.

    Google Scholar 

  4. Pogge, H.B. (1975) Method of fabricating semiconductor device embodying dielectric isolation. US Patent 3919060.

    Google Scholar 

  5. Magdo, I. E., Magdo, S., Nestork, W.J. (1976) Process for fabricating devices having dielectric isolation utilizing anodic treatment and selective oxidation. US Patent 3954523.

    Google Scholar 

  6. Pogge, H.B. (1978) Total dielectric isolation utilizing a combination of reactive ion etching, anodic etching, and thermal oxidation. US Patent 4104090.

    Google Scholar 

  7. Imai, K. (1983) Semiconductor devices and method of manufacturing the same. US Patent 4393577.

    Google Scholar 

  8. Imai, K., Unno, H. (1984) FIPOS technology and its application to LSI’s. IEEE Trans.Electron.Dev. 31, 297–302.

    Article  Google Scholar 

  9. Mano, T., Baba, T., Sawada, H., Imai, K. (1982) FIPOS CMOS 16K-bit static RAM. Technical Digest Symp. on VLSI Technology, 12.

    Google Scholar 

  10. Ehara, K., Unno, H., Muramoto, S. (1985) 1,5 μm FIPOS/CMOS VLSI process with low wafer warpage and Si deposit-defect-free. Electrochem.Soc.Ext.Abs. 85, 457.

    Google Scholar 

  11. Frye, R.C. (1983) Method of forming dielectrically isolated silicon semiconductor materials utilizing porous silicon formation. US Patent 4380865.

    Google Scholar 

  12. Konaka, S., Tabe, M., Sakai, T. (1982) A new silicon-on-insulator structure using a silicon molecular beam epitaxial growth on porous silicon. Appl.Phys.Lett. 41, 86–88.

    Article  Google Scholar 

  13. Lin, T.L., Chen, S.C., Wang, K.L., Iyar, S. (1986) Si-MBE SOI. Mat.Res.Soc.Proc. 53, 193–197.

    Article  Google Scholar 

  14. Bomchil, G., Halimaoui, A., Herino, R. (1989) Procede de fabrication d’une structure de silicium sur isolant. Patent of France 2620571.

    Google Scholar 

  15. Kinney, W.I., Lasky, J.B., Nesbit, L.A. (1985) Method of manufacturing semiconductor structures having an oxidized porous silicon isolation layer. US Patent 4532700.

    Google Scholar 

  16. Zorinsky, E.J., Spratt, D.B. (1986) Method for obtaining full oxide isolation of epitaxial islands in silicon utilizing selective oxidation of porous silicon. US Patent 4628591.

    Google Scholar 

  17. Holmstrom, R.P., Chi, W.J-Y. (1986) Method of forming an isolated semiconductor structure. US Patent 4627883.

    Google Scholar 

  18. Yonehara, T. (1994) Semiconductor member and process for preparing semiconductor member. US Patent 5371037.

    Google Scholar 

  19. http://www.canon.co.jp/ELTRAN

    Google Scholar 

  20. Tsao, S.S. (1987) Porous Silicon Techniques for SOI Structures. IEEE Circuit & Device Magazine 3, 3–7.

    Article  Google Scholar 

  21. Matloubian, M., Zorinsky, E.J., Spratt, D. (1986) Total dose radiation characteristics of SOI mosfets fabricated using islands technology. IEEE Transactions on Nuclear Science 35, 1650–1652.

    Article  Google Scholar 

  22. Zorinsky, E.J., Spratt, D.B., Virkus R.L. (1986) The “islands” method — a manufacturable porous silicon SOI technology. Technical Digest of IEDM, 431–434.

    Google Scholar 

  23. Barla, K., Bomchil, G., Herino, R., Monroy, A. (1987) SOI Technology Using Buried Layers of Oxidized Porous Si. IEEE Circuit & Device Mago 3, 11–14.

    Article  Google Scholar 

  24. Thomas, N.J., Davis, J.R., Keen, J.M., Castledine, J.G., Brumhead, D., Goulding, M., Alderman, J., Farr, J.P.G., Earwaker, L.G., L’Ecuyer, J., Stirland, I.M., Cole, J.M. (1989) High-Performance Thin-Film Silicon-on-Insulator CMOS Transistors in Porous Silicon. IEEE Elect.Dev.Let. 10, 129–131.

    Article  Google Scholar 

  25. Bondarenko, V.P., Yakovtseva, V.A., Dolgyi, L.N Dorofeev, A., Vorozov, N., Troyanova, G. (1994) SOI — structures based on oxidized porous silicon. Microelektronika 23, 61–68 (in Russian).

    Google Scholar 

  26. Bondarenko, V.P., Bogatirev, Y.V., Dolgyi, L.N., Dorofeev, A.M., Panfilenko, A.K., Shvedov, S.V., Troyanova, G.N., Vorozov, N.N., Yakovtseva, V.A. (1995) 1.2 μm CMOS/SOI on porous silicon, in J.P. Colinge, A.N. Nazarov (eds.). Physical and Technical Problems of SOI Structures and Devices, Kluwer Academic Publishers, Dordrecht, pp.275–280.

    Chapter  Google Scholar 

  27. Balucani, M., Bondarenko, V., Dolgyi, L.N., Ferrari, A., Lamedica, G., Yakovtseva, V.A. (2000) Process for forming structures with different conductivity showing a hyperfine transition region, for forming porous silicon. International Patent: PCT/IT00/00329

    Google Scholar 

  28. Balucani, M., Bondarenko, V., Dolgyi, L.N., Ferrari, A., Lamedica, G., Yakovtseva, V.A. (2000) Process for the two-step selective anodization of a semiconductor layer for forming porous silicon. International Patent: PCT/IT00/000330

    Google Scholar 

  29. Balucani, M., Bondarenko, V., Ferrari, A., Lamedica, G., Panfilenko, A.K., Yakovtseva, V.A. (2000) Process for the forming of isolation layers of a predetermined thickness in semiconductors wafers for the manufacturing of integrated circuits. International Patent: PCT/IT00/00331

    Google Scholar 

  30. Romanow, S.I., Dvurechenskii, A.V., Kirienko, V.V, Grötschel, R., Gutakovskii, A., Sokolov, L.V., Lamin, M.A. (2000) Homoepitaxy on porous silicon with a buried oxide layer: full-wafer scale SOI. in H.L.F. Hemment, V.S. Lysenko, A.N. Nazarov (eds). Perspectives, Science and Technologies for Novel Silicon on Insulator Devices, Kluwer Academic Publishers, Dordrecht, pp.29–46.

    Chapter  Google Scholar 

  31. Balucani, M., Bondarenko, V., Lamedica, G., Ferrari, A. (2000) Opto-electronic Silicon On Insulator integrated circuits by porous silicon technology. Electronic Group Meeting, Parma 9/06/2000.

    Google Scholar 

  32. Yamanaka, H., Sakamoto, M. (1975) Oxygen sensitivity of porous silicon formed by anodic reaction. Jap.J.Appl.Phys. 14, 303–304.

    Article  Google Scholar 

  33. Imai, K., Yashiro, T. (1976) Oxidized Porous Silicon-Silicon Interface Investigation by C-V Method. Jap.J.Appl.Phys. 15, 553–554.

    Article  Google Scholar 

  34. Arita, Y., Kuranari, K., Sunohara, Y. (1976) Thermal behavior of porous silicon Jap.J.Appl.Phys. 15, 1655–1664.

    Article  Google Scholar 

  35. Unagami, T. (1980) Oxidation of Porous Silicon and Properties of Its Oxide Film. Jap.J.Appl.Phys. 19, 231–241.

    Article  Google Scholar 

  36. Aboaf, J.A., Broadie, R.W., Pliskin, W.A. (1977) Integrated circuit isolation structure and method for producing the isolation structure. US Patent 4016017.

    Google Scholar 

  37. Yon, J.J., Barla, K., Herino, R., Bomchil, G. (1987) The kinetics and mechanism of oxide layer formation from porous silicon formed on p-Si substrates. J.Appl.Phys. 62, 1042–1048.

    Article  Google Scholar 

  38. Barla, K., Herino, R., Bomchil, G. (1986) Stress in oxidized porous silicon layers. J.Appl.Phys. 59, 439.

    Article  Google Scholar 

  39. Pickering, C., Beale, M.I., Robbins, D.J, Pearson, P.J., Greef, R. (1985) Optical properties of porous silicon films. Thin Solid Films 125, 157–163.

    Article  Google Scholar 

  40. Burkhardt, P.J., Robert, M. (1977) Porous silicon dioxide moisture sensor and method for manufacture of a moisture sensor. US Patent 4057823.

    Google Scholar 

  41. Schechter, I., Ben-Chorin, M., Kux, A. (1995) Gas Sensing Properties of Porous Silicon. Anal. Chem. 67, 3727–3732.

    Article  Google Scholar 

  42. Balucani, M., Bondarenko, V., Dolgyi, L. La Monica, S., Masini, G., Yakovtseva, V., Ferrari, A. (1997) Humidity Sensor on Partially Oxidized Porous Silicon. Solid State Phenomena 54, 75–83.

    Article  Google Scholar 

  43. Sailor, M.J. (1997) Sensor applications of porous silicon, in L. Canham (eds.). Properties of porous silicon. EMIS Datareviews Series No 18, INSPEC, The Institution of Electrical Engineers, London, pp. 364–370.

    Google Scholar 

  44. Theiss, W., Hilbrich, S. (1997) Refractive index of porous silicon, in L. Canham (eds.). Properties of porous silicon. EMIS Datareviews Series No 18, INSPEC, The Institution of Electrical Engineers, London, pp. 223–228.

    Google Scholar 

  45. Yakovtseva, V., Dolgyi, L., Vorozov, N., Kazuchits, N., Bondarenko, V., Balucani, M., Lamedica, G., Franchina, L., Ferrari, A. (2000) Oxidized Porous Silicon: From Dielectric Isolation to Integrated Optical Waveguides. J.of Porous Materials 7, 215–222.

    Article  Google Scholar 

  46. Benson, T.M., Arrand, H.F., Sewell, P., Niemeyer, D., Loni, A., Bozeat, R.J., Krüger, M., Arens-Ffischer, R., Thönissen, Lüth, H. (1999) Progress towards achieving integrated circuit functionality using porous silicon optoelectronic components. Materials Science and Engineering B69-70, 92–99.

    Google Scholar 

  47. Bondarenko, V., Dolgyi, L., Dorofeev, A., Kazuchits, N., Leshok, A., Troyanova, G., Vorozov, N., Maiello, G., Masini, G., La Monica, S., Ferrari, A. (1997) Porous silicon as low-dimensional host material for erbium-doped structures. Thin Solid Films 297, 48–52.

    Article  Google Scholar 

  48. Bondarenko, V.P., Vorozov, N., Dolgyi, L., Yakovtseva, V., Petrovich, V., Volchek, S., Kazuchits, N., Grom, G., Lopez, N.A., Tsybeskov, L., Fauchet, P.M. (1999) Formation and luminescent properties of oxidized porous silicon doped with erbium by electrochemical procedure. Mat.Res.Soc.Symp.Proc. 536, 69–74.

    Google Scholar 

  49. Bondarenko, V.P., Yakovtseva, V.A. (1997) Optoelectronic applications of porous silicon, in L. Canham (eds.). Properties of porous silicon. EMIS Datareviews Series No 18, INSPEC, The Institution of Electrical Engineers, London, pp. 356–363.

    Google Scholar 

  50. Miller, R.O. (1990) Method of making a silicon integrated circuit waveguide. US Patent 4927781.

    Google Scholar 

  51. Bondarenko, V.P., Dorofeev, A.M. (1995) Why porous silicon for SOI? in J.P. Colinge (eds.) Physical and Technical Problems of SOI Structures and Devices, Kluwer Academic Publishers, Netherlands, pp. 15–26.

    Chapter  Google Scholar 

  52. Bondarenko, V.P., Yakovtseva, V.A. (1997) Microelectronic applications of porous silicon, in L. Canham (eds.). Properties of porous silicon. EMIS Datareviews Series No 18, INSPEC, The Institution of Electrical Engineers, London, pp. 343–348.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bondarenko, V. et al. (2002). Oxidized Porous Silicon Based SOI: Untapped Resources. In: Balestra, F., Nazarov, A., Lysenko, V.S. (eds) Progress in SOI Structures and Devices Operating at Extreme Conditions. NATO Science Series, vol 58. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0339-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0339-1_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0576-3

  • Online ISBN: 978-94-010-0339-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics