Charge Carrier Injection and Trapping in the Buried Oxides of SOI Structures

  • A. N. Nazarov
  • V. I. Kilchytska
  • I. P. Barchuk
Part of the NATO Science Series book series (NAII, volume 58)


The electron injection processes in the silicon-on-insulator (SOI) devices affect strongly the reliability of device operation [1]. Usually the buried oxide (BOX)/silicon film interface shows worse structural and electrical properties than that of the gate oxide/silicon film interface [2]. This leads to enhanced charge trapping and degradation of the BOX during SOI device operation. Therefore, the promising perspectives of SOI devices for some applications (especially for high-voltage and high-temperature devices) are often limited by carrier injection processes in the BOX.


Electron Injection Gate Oxide Film Interface Electron Trapping Charge Trapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ioannou, D.E. (1995) Hot carrier reliability of SOI structures, in J.P. Colinge et al. (eds.), Physical and Technical Problems of SOI structures and Devices, Kluwer, Dordrecht, pp.199–210CrossRefGoogle Scholar
  2. 2.
    Ouisse, T., Cristoloveanu, S., and Borel, G. (1991) Hot-carrier-induced degradation of the back interface in short-channel Silicon-On-lnsulator MOSFET’s, IEEE Electr. Dev. Lett. 12, 290–292.CrossRefGoogle Scholar
  3. 3.
    Mayo, S., Suchle, J.S., and Roitman, P. (1993) Breakdown mechanism in buried silicon oxide films, J. Appl. Phys. 74, 4113–4120.CrossRefGoogle Scholar
  4. 4.
    Revesz, A.G., Brown, G.A., and Hughes, H.L. (1993) Bulk electrical conduction in buried oxide of SIMOX structures, J. Electrochem. Soc. 140, 3222–3229.CrossRefGoogle Scholar
  5. 5.
    Wainwright, S.P., Ngwa, C., Hall, S., and Eccleston, W. A study of high field conduction and electron trapping in buried oxides produced by SIMOX technology, Microelectron. Eng. 22, 399–402.Google Scholar
  6. 6.
    Bengtsson, S., Ericsson, P., Sodervall, U., Mitani, K., and Abe, T. (1995) Charge carrier injection into the buried oxide of wafer-bonding silicon-on-insulator materials, J. Electrochem. Soc. 142, 2721–2726.CrossRefGoogle Scholar
  7. 7.
    Weinberg, Z.A. (1977) Tunneling of electrons from Si into thermally grown SiO2, Solid State Electron. 20, 11–18.CrossRefGoogle Scholar
  8. 8.
    Lenzlinger, M., and Snow, E.H. (1969) Fowler-Nordheim tunneling into thermally grown SiO2, J. Appl. Phys. 40, 278–283.CrossRefGoogle Scholar
  9. 9.
    Revesz, A.G., and Hughes, H.L. (1995) The defect structure of buried oxide layers in SIMOX and BESOI structures, in in J.P. Colinge et al. (eds.), Physical and Technical Problems of SOI structures and Devices, Kluwer, Dordrecht, pp.133–156.CrossRefGoogle Scholar
  10. 10.
    Wainwright, S.P., Hall, S., and Harsh, C.D. (1994) Electrical characterization of thin film, thin buried oxide SIOX SOI structures produced by low-energy, low-dose implantation, Semicond. Sci. Technol. 9, 1404–1413.CrossRefGoogle Scholar
  11. 11.
    Ngwa, C.S., and Hall, S. (1994) Electron trapping studies in multiple-and single-implant SIMOX oxides, Semicond. Sci. Technol. 9, 1069–1079.CrossRefGoogle Scholar
  12. 12.
    Bruel, M. (2000) Smart-Cut® technology: basic mechanisms and applications, in P.L.F. Hemment et. al (eds.), Perspectives, Science and Technology for Novel Silicon-in-Insulator Devices, Kluwer, Dordrecht, pp. 1–15.CrossRefGoogle Scholar
  13. 13.
    Stoemenos, J. (1993) Microstructure of SIMOX buried oxide, mechanisms of defect formation and related reliability issues, Microelectron. Eng. 22, 307–314.CrossRefGoogle Scholar
  14. 14.
    Kranse, S., Anc., M, and Roitman, P. (1998) Evaluation and future trends of SIMOX material, MRS bulletin 23, 25–29.Google Scholar
  15. 15.
    Afanas’ev, V.V., Stesmans, A., and Twigg, H.E. (1996) Epitaxial Growth of SiO2 produced in silicon by oxygen ion implantation, Phys. Rev. Lett. 77, 4206–4209.CrossRefGoogle Scholar
  16. 16.
    Stesmans, A., Devine, R.A.B., Revesz, A.G., and Hughes, H.L. (1990) Irradiation induced ESR active defects in SIMOX structures, IEEE Trans. Nucl. Sci. NS-37, 2008–2012.CrossRefGoogle Scholar
  17. 17.
    Warren, W.L., Shaneyfeld, M.R., Schwank, J.R., Fleetwood, D.M., and Winokur P.S. (1993) Paramagnetic defect centers in BESOI and SIMOX buried oxides, IEEE Trans. Nucl. Sci. NS-40, 1755–1764.CrossRefGoogle Scholar
  18. 18.
    Vanhensden, K., and Stesmans, A. (1994) Similarities between separation by implanted oxygen and bonded and etch-back silicon-on-insulator material as revealed by electron spin resonance, in S. Cristoloveanu et. al. (eds), Silicon-On-Insulator Technology and Devices 94-11, ECS Inc., Pennington, 197–202.Google Scholar
  19. 19.
    Afanas’ev, V.V., Stesmans, A., Revesz, A.G., and Hughes, H.L. (1997) Structural inhomogenity and silicon enrichment of buried SiO2 layers formed by oxygen ion implantation in silicon, J. Appl. Phys. 82, 2184–2199.CrossRefGoogle Scholar
  20. 20.
    Bengtsson, S., Jauhiainen, A., and Engstrom, O. (1992) Oxide degradation of wafer bonded metal oxide semiconductor capacitors following Fowler-Nordheim electron injection, J. Electrochem. Soc. 139, 2302–2306.CrossRefGoogle Scholar
  21. 21.
    Jauhiainen, A., Bengtsson, S., and Engstrom, O. (1992) Charge trapping in wafer bonded MOS structures, Microelectronic Eng. 19, 597–600.CrossRefGoogle Scholar
  22. 22.
    Hall, S., and Wainwright, S.P. (1996) On electron conduction and trapping in SIMOX dielectric, J. Electrochem. Soc. 143, 3354–3358.CrossRefGoogle Scholar
  23. 23.
    Margail, J., Lamure, J.M., and Papon, A.M. (1992) Defects in SIMOX structures: some process dependence, Mat. Sci. And Eng. B12, 27–36.Google Scholar
  24. 24.
    Di Maria, D.J., Wong, D.W., Falcony, C, Theis, T.N., Kirtley, J.R., Tsany, J.C., Young, D.R., and Pesavento, F.L. (1983) Charge transport and trapping phenomena in off-stoichiometric silicon dioxide films, J. Appl. Phys. 54, 5801–5827.CrossRefGoogle Scholar
  25. 25.
    Strzalkowski, I., and Kowalski, M. (1996) Positive and negative charge creation in the SiO2 film of a MOS transistor by high electric field stress, Appl. Phys. A63, 179–182.Google Scholar
  26. 26.
    Samanta, P., and Sarkar, C.K. (1997) Analysis of positive charge trapping in silicon dioxide of MOS capacitors during Fowler-Nordheim stress, Sol.-St. Electron. 41, 459–464.CrossRefGoogle Scholar
  27. 27.
    Chen, C., Wilson, W.L., and Smagling, M. (1998) Tunneling induced charge generation in SiO2 thin film, J. Appl. Phys 83, 3898–3905.CrossRefGoogle Scholar
  28. 28.
    Ning, T.H., and Yu, H.N. (1974) Optical induced injection of hot electrons into SiO2, J. Appl. Phys. 45, 5373–5378.CrossRefGoogle Scholar
  29. 29.
    Fischetti, M.V. (1985) Generation of positive charge in silicon dioxide during avalanch and tunnel electron injection, J. Appl. Phys. 57, 2860–2879.CrossRefGoogle Scholar
  30. 30.
    DiMaria, D.J., and Stasik, J.W. (1989) Trap creation in silicon dioxide produced by hot electrons, J. Appl. Phys. 65, 2342–2356.CrossRefGoogle Scholar
  31. 31.
    DiMaria, D.J., Cartier, E., and Arnold, D. (1993) Impact ionization, trap creation, degradation, and breakdown in silicon dioxide film on silicon, J. Appl. Phys. 73, 3367–3384.CrossRefGoogle Scholar
  32. 32.
    Nagai, K., Sekigawa, T., and Hayashi, Ya. (1985) Capacitance-voltage characteristics of SIS structures, Sol. St. Electron. 28, 789–798.CrossRefGoogle Scholar
  33. 33.
    Nazarov, A.N., Lysenko, V.S., Gusev, V.A., and Kilchitskaya, V.I. (1994) C-V and thermally activated investigations of ZMR SOI meza structures, in S. Cristoloveanu et al. (eds), Silicon-On-Insulator Technology and Devices 94-11, ECS Publishers, NJ, pp. 236–244.Google Scholar
  34. 34.
    Bachanan, D.A., Marwick, A.D., Di Maria, D.J., and Don, L. (1994) Hot-electron-induced hydrogen redistribution and defect generation in metal-oxide-semiconductor capacitors, J. Appl. Phys. 76, 3595–3608.CrossRefGoogle Scholar
  35. 35.
    Klein, N., and Solomon, P. (1976) Current runaway in insulators affected by impact ionization and recombination, J. Appl. Phys. 47, 4364–4372.CrossRefGoogle Scholar
  36. 36.
    Nissan-Cohen, Y., Shappir, J., and Frohman-Beatchkowsky, D. (1985) Dynamic model of trappingdetrapping in SiO2, J. Appl. Phys. 58, 2252–2261.CrossRefGoogle Scholar
  37. 37.
    Fischetti, M.V. (1985) Model for the generation of positive charge at the Si-SiO2 interface based on hothole injection from the anode, Phys. Rev. B 31, 2099–2113.CrossRefGoogle Scholar
  38. 38.
    DiMaria, D.J., Cartier, E., and Buchanan, D.A. (1996) Anode hole injection and trapping in silicon dioxide, J. Appl. Phys. 80, 304–317.CrossRefGoogle Scholar
  39. 39.
    Arnold, D., Cartier, E., and Di Maria, D.J. (1994) Theory of high-field electron transport and impact ionization in silicon dioxide, Phys. Rev. B 49, 10278–10297.CrossRefGoogle Scholar
  40. 40.
    DiMaria, D.J. (1999) Defect production, degradation, and breakdown of silicon dioxide films, Sol. St. Electron. 41, 957–965.CrossRefGoogle Scholar
  41. 41.
    Nazarov, A.N., Kilchytska, V.I., Barchuk, I.P., Tkachenko, A.S., and Ashok, S. (2000) Radio frequency plasma annealing of positive charge generated by Fowler-Nordheim electron injection in buried oxides in silicon, J. Vac. Sci. Technol. B18, 1254–1261.Google Scholar
  42. 42.
    Sah, T.C., San, J. Y.-C., and Tzow, J. J.-T. (1983) Generation-annealing kinetics and atomic models of a compensating donors in the surface space charge layer of oxidized silicon, J. Appl. Phys. 54, 944–956.CrossRefGoogle Scholar
  43. 43.
    Sah, T.C., San, J. Y.-C., and Tzow, J.J.-T. (1984) Study of the atomic models of three donorlike defects in silicon metal-oxide-semiconductor structures from their gate material and process dependencies, J. Appl. Phys. 55, 1525–1545.CrossRefGoogle Scholar
  44. 44.
    Pearton, S.J., Corbett, J.W., and Stavola, M. (1992) Hydrogen in crystalline semiconductors, Springer-Verlag.Google Scholar
  45. 45.
    Devine, R.A.B., (1999) The structure of SiO2, its defects and radiation hardness, IEEE Trans. Nucl. Sci. 41, 452–460.CrossRefGoogle Scholar
  46. 46.
    Boutry-Forveille, A., Nazarov, A., and Ballutaud, D. (1998) Deuterium diffusion, trapping and stability in buried silicon dioxide layers, in N.-H. Nickle et al. (eds), Hydrogen in Semiconductors and Metals, MRS, Warrendalle, v. 513, pp. 319–324.Google Scholar
  47. 47.
    Ballutaud, D., Boutry Forveille, A., and Nazarov, A. (1999) Hydrogen thermal stability in buried oxides of SOI structures, Microelectron Engineering 48, 359–362.CrossRefGoogle Scholar
  48. 48.
    Di Maria, D.J. (1978) The properties of electorn and hole traps in thermal dioxide layers growth on silicon, in S.T. Pantelides (ed.), The Physics of SiO2 and Its Interfaces, Pergamon Press, NY, pp.Google Scholar
  49. 49.
    Bruel, M. (198) The history, physics and applications of the smart-cut® process, MRS bulletin 23, 35–39.Google Scholar
  50. 50.
    Zaritski, I.M., Nazarov, A.N., and Kilchytska, V.I. (1995) (unpublished)Google Scholar
  51. 51.
    Conley, J., and Lenahan, P. (1996) A review of electron spin resonance spectroscopy of defects in thin film SiO2 on silicon, in H.Z. Massond et al. (eds), The Physics and Chemistry of SiO2 and the SiO2-Si interface — 3, ECS 96-1, pp.214–249.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • A. N. Nazarov
    • 1
  • V. I. Kilchytska
    • 1
  • I. P. Barchuk
    • 1
  1. 1.Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations