Skip to main content

Cytogenetics of Lepidopteran Insects

  • Chapter

Abstract

Lepidoptera is one of the largest orders of class Insecta having approximately 100,000 known species. The cytogenetic work has been carried out only on about 2000 species so far, may be, due to technical difficulties in handling lepidopteran chromosomes. This group shows some interesting features regarding high chromosome number, their small size, female heterogamety and sticky nature of chromosomes. There exists a controversy regarding the centromeric organization. While EM studies and experimental data show the presence of holocentricity, some cytological observations tend to prove monocentricity. There are very few reports on the banding pattern analysis of lepidopteran chromosomes. The distribution of chromosome numbers in various groups of this order show wide ranges but there are clear cut concentrations around a modal number in each case. The sex chromosomes have also been identified only in a very few species. The most common sex-chromosome mechanism is ZZ: ZW although ZZ/ZO, XY1Y2: XX as well as A Z: ZZ have also been reported. The females of this group exhibit achiasmatic meiosis and non-homologous telomeric association between the bivalents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, S.M., Margison, G.P. and Strike, P. (1992) Inducible alkyltransferase DNA repair proteins in the filamentous fungus. Aspergillus nidulans. Nucl. Acids Res. 20: 645-651.

    Article  PubMed  CAS  Google Scholar 

  • Batschauer, A. (1993) A plant gene for photolyase: an enzyme catalysing the repair of UV-light-induced DNA damage. Plant J. 4: 705-709.

    Article  PubMed  CAS  Google Scholar 

  • Becker, K., Dosch, J., Gregel, C.M., Martin, B.A. and Kaina, B. (1996) Targeted expression of human O6-methylguanine-DNA methyltransferase (MGMT) in transgenic mice protects against tumor initiation in twostage skin carcinogenesis. Cancer Res. 56: 3244-3249.

    PubMed  CAS  Google Scholar 

  • Beranek, D.T. (1990) Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutation Res. 231: 11-30.

    PubMed  CAS  Google Scholar 

  • Berdal, K.G., Bjoras, M., Bjelland, S. and Seeberg, E. (1990) Cloning and expression in Escherichia coli of a gene for an alkyl base DNA glycosylase from Saccharomyces cerevisiae; a homologue to the bacterial alkA gene. EMBO J. 9: 4563-4568.

    PubMed  CAS  Google Scholar 

  • Bessho, T., Roy, R., Yainamoto, K., Kasai, H., Nishimura, S., Tano, K. and Mitra, S. (1993) Repair of 8-hydroxyguanine in DNA by mammalian N-methylpurine-DNA glycosylase. Proc. Natl. Acad. Sci. USA 90: 8901-8904.

    Article  PubMed  CAS  Google Scholar 

  • Boldogh, I., Ramana, C.V., Chen, Z., Biswas, T., Hazra, T.K., Grösch, S., Grombacher, T., Mitra, S. and Kaina, B. (1998) Regulation of expression of the DNA repair gene O6-methylguanine-DNA methyltransferase via protein kinase C-mediated signaling. Cancer Res. 68: 3950-3956.

    Google Scholar 

  • Bones, A.M. (1993) Expression and occurrence of uracil-DNA glycosylase in higher plants. Physiol. Plant. 88: 682-688.

    Article  CAS  Google Scholar 

  • Britt, A.B., Chen, J.J., Wynhoff, D. and Mitchell, D. (1993) A UV-sensitive mutant of Arabidopsis defective in the repair of pyrimidine-pyrimidone (6-4) dimers. Science 261: 1571-1574

    Article  PubMed  Google Scholar 

  • Britt, A.B. (1996) DNA damage and repair in plants. Ann. Rev. Plant. Physiol. Plant. Mol. Biol. 47: 75-100.

    Article  CAS  Google Scholar 

  • Chakravarti, D., Ibeanu, G.C., Tano, K. and Mitra, S. (1991) Cloning and expression in Escherichia coli of a human cDNA encoding the DNA repair protein N-methylpurine-DNA glycosylase. J. Biol. Chem. 266: 15710-15715.

    PubMed  CAS  Google Scholar 

  • Chen, J., Derfler, B. and Samson, L. (1990) Saccharomyces cervisiae 3-methyladenine DNA glycosylase has homology to the AlkA,4 glycosylase of E. coli and is induced in response to DNA alkylation damage. EMBO J. 9: 4569-4575.

    PubMed  CAS  Google Scholar 

  • Chen, J.J., Mitchel, D. and Britt, A.B. (1994) A light-dependent pathway for the elimination of UV-induced pyrimidine (6-4) pyrimidone photoproducts in Arabidopsis. Plant. Cell. 6: 1311-1317.

    Article  PubMed  CAS  Google Scholar 

  • Christians, F.C. and Loeb, L.A. (1996) Novel human DNA alkyltransferase obtained by random substitution and genetic selection in bacteria. Proc. Natl. Acad. Sci. USA 92: 6124-6128.

    Article  Google Scholar 

  • Day, R.S. III., Ziolkowski, C.H.J., Scudiero, D.A., Meyer, S.A. and Mattern, M.R. (1980) Human tumor cell strains defective in the repair of alkylation damage. Carcinogenesis 1: 21-32.

    Article  CAS  Google Scholar 

  • Demple, B., Sedgewick, B., Robins, P., Totty, N., Waterfield, M.D. and Lindahl, T. (1985) Active site and complete sequence of the suicidal methlytransferase that counters alkylation mutagenesis. Proc. Natl. Acad. Sci. USA 82: 2688-2692.

    Article  PubMed  CAS  Google Scholar 

  • Dolferus, R.D., van den Bossche, D. and Jacobs, M. (1990) Sequence analysis of two null mutant alleles of the single Arabidopsis Adh. locus. Mol. Gen. Genet. 224: 297-302.

    Article  CAS  Google Scholar 

  • Eshleman, J.R. and Markowitz, S.D. (1996) Mismatch repair defects in human carcinogenesis. Hum Mol. Genet. 5: 1489-1494.

    PubMed  CAS  Google Scholar 

  • Friedberg, E.C., Walker, G.C. and Siede, W. (1995) DNA Repair and Mutagenesis, Washington, D.C., ASM. Press.

    Google Scholar 

  • Fritz, G., Tano, K., Mitra, S. and Kaina, B. (1991) Inducibility of the DNA repair gene encoding O6-methylguanine-DNA methyltransferase in mammalian cells by DNA-damaging treatments. Mol. Cell. Biol. 11: 4660-4668.

    PubMed  CAS  Google Scholar 

  • Fritz, G. and Kaina, B. (1992) Stress factors affecting expression of O6-methylguanine DNA methyltransferase mRNA in rat hepatoma cells. Biochem. Biophys. Acta, 1171: 35-40.

    PubMed  CAS  Google Scholar 

  • Frost, B.F. and Small, G. (1987) The apparent lack of repair of O6-methylguanine in nuclear DNA of Clamydomonas reinhardtii. Mutation Res. 181: 37-44.

    CAS  Google Scholar 

  • Grombacher, T. and Kaina, B. (1995) Constitutive expression and inducibility of O6-methylguanine-DNA methyltransferase and N-methylpurine-DNA glycosylase in rat liver cells exhibiting different status of differentiation. Biochim. Biophys. Acta. 1270: 63-72.

    PubMed  Google Scholar 

  • Grombacher, T. and Kaina, B. (1996) Isolation and analysis of inducibility of the rat N- methylpurine-DNA glycosylase promoter. DNA Cell Biol. 15: 581-588.

    Article  PubMed  CAS  Google Scholar 

  • Grombacher, T., Eichhorn, U. and Kaina, B. (1998) p53 is involved in regulation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) by DNA damaging agents, Oncogene, 17: 845-851.

    Article  PubMed  CAS  Google Scholar 

  • Kaina, B., Fritz, G. and Coquerelle, T. (1993) Contribution of 06-alkylguanine and N-alkylpurines to the formation of sister chromatid exchanges, chromosomal aberrations and gene mutations: New insights gained from studies of genetically engineered mammalian cell lines. Env. Mol. Mutagen. 22: 283-292.

    Article  CAS  Google Scholar 

  • Karran, P., Hjelmgren, T. and Lindahl, T. (1982) Induction of a DNA glycosylase for N-methylated purines is part of the adaptive response to alkylating agents. Nature 296: 770-773.

    Article  PubMed  CAS  Google Scholar 

  • Kawate, H., Ihara, K., Kohda, K., Sakumi, K. and Sekiguchi, M. (1995) Mouse methyltransferase for repair of O6-methylguanine and O4-methylthymine. Carcinogenesis 16: 1595-1602.

    Article  PubMed  CAS  Google Scholar 

  • Koike, G., Maki, H., Takeya, H., Hayakawa, H. and Sekiguchi, M. (1990) Purification, structure, and biochemical properties of human O6-methylguanine-DNA methyltransferase. J. Biol. Chem. 265: 14754-14762.

    PubMed  CAS  Google Scholar 

  • Kolodner, R. (1996) Biochemistry and genetics of eukaryotic mismatch repair. Genes and Dev. 10: 1433-1442.

    Article  PubMed  CAS  Google Scholar 

  • Laval, F. (1990) Induction of proteins involved in the repair of alkylated bases in mammalian cells by DNA-damaging agents. Mutation Res. 233: 211-218.

    PubMed  CAS  Google Scholar 

  • Lawley, P.D.(1984) Carcinogenesis by alkylating agents. In: Searl, C.E. (Ed.), Chemical Carcinogens. American Chemical Society, Washington, D.C., pp. 325-484.

    Google Scholar 

  • Lefebvre, P., Zak, P. and Laval, F. (1993) Induction of O6-methylguanine-DNA methyltransferase and N3-methyladenine-DNA glycosylase in human cells exposed to DNA-damaging agents. DNA Cell Biol. 12: 23 3-241.

    Article  PubMed  CAS  Google Scholar 

  • Liem, L-K., Lim, A. and Li, B.F.L. (1994) Specificities of human, rat and E.coli O6 -methylguanine-DNA methyltransferase towards the repair of O6-methyl and O6-ethylguanine in DNA. Nucl Acids. Res. 22: 1613-1619.

    Article  PubMed  CAS  Google Scholar 

  • Lindahl, T., Sedgewick, B., Sekiguchi, M. and Nakabeppu, Y. (1988) Regulation and expression of the adaptive response to alkylating agents. Ann. Rev. Biochem. 57: 133-157.

    Article  PubMed  CAS  Google Scholar 

  • Ling-Ling, C, Nakamura, T., Nakatsu, Y., Sakumi, K., Hayakawa, H. and Sekiguchi, M. (1992) Specific amino acid sequence required for O6-methylguanine-DNA methyltransferase activity: analyses of three residues at or near the methyl acceptor site. Carcinogenesis 13: 837-843.

    Article  Google Scholar 

  • Loveless A (1969) Possible relevance of O6-alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines Nature 223: 206-207.

    Article  PubMed  CAS  Google Scholar 

  • Moore, M.H., Gulbis, J.M., Dodson, E.J., Demple, B. and Moody, P.C.E. (1994) Crystal structure of a suicidal DNA repair protein: the Ada O6-methylguanine-DNA methyltransferase from E.coli. EMBO J. 13: 1495-1501.

    PubMed  CAS  Google Scholar 

  • Morohoshi, F., Hayashi, K. and Manukata, N. (1993) Bacillus subtilis alkA gene encoding inducible 3-methyladenine DNA glycosylase-is. adjancent to the ada operon. J. Bacteriology 175: 6010-6017.

    CAS  Google Scholar 

  • O'Connor, T.R. and Laval, F. (1990) Isolation and structure of a cDNA expressing a mammalian 3-methlyadenine-DNA glycosylase. EMBO J. 9: 3337-3342.

    PubMed  Google Scholar 

  • Orozco, B.M., McClung, C.R., Werneke, J.M. and Ogren, W.L. (1993) Molecular basis of the ribulose-1,5-bisphosphate carboxylase/oxygenase activate mutation in Arabidopsis thaliana is a guanine-to-adenine transition at the 5'-splice junction of intron. 3. Plant. Physiol. 102: 227-232.

    Article  PubMed  CAS  Google Scholar 

  • Pang, Q., Hays, J.B., Rajagopal, I. and Schaefer, T.S. (1993) Selection of Arabidopsis cDNAs that partially correct phenotypes of Escherichia coli DNA-damage sensitive mutants and analysis of two plant cDNAs that appear to express UV-sensitive dark repair activities. Plant. Mol. Biol. 22: 411-426.

    Article  PubMed  CAS  Google Scholar 

  • Pegg, A.E., Dolan, M.E. and Moschel, R.C. (1995) Structure, function and inhibition of O6-alkylguanine-DNA alkyltransferase. Nucl. Acids Res. Mol. Biol. 51: 167-223.

    Article  CAS  Google Scholar 

  • Potter, P.M., Wilkinson, M.C., Fitton, J., Carr, F.J., Brennand, J., Cooper, D.P. and Margison, G.P. (1987) Characterization and nucleotide sequence of ogt, the O6-alkylguanine-DNA alkyltransferase gene of E coli. Nucl. Acids Res. 15: 9177-9193.

    Article  PubMed  CAS  Google Scholar 

  • Quaite, F.E., Takayanagi, S., Ruffini, J., Sutherland, J.C. and Sutherland, B.M. (1994) DNA damage levels determine cyclobutyl pyrimidine dimer repair mechanisms in Alfalfa seedlings. Plant Cell 6: 1635-1641.

    Article  PubMed  CAS  Google Scholar 

  • Rafferty, J.A., Clarke, E.R., Sellappan, D., Koref, M.S., Frayling, I.M. and Margison, G.P. (1996) Induction of murine O6-alkylguanine-DNA alkyltransferase in response to ionising radiation is p53 gene dose dependent Oncogene 12, 693-697.

    PubMed  CAS  Google Scholar 

  • Rebeck, G.W., Coons, S., Carroll, P. and Samson, L. (1988) A second DNA methyltransferase repair enzyme in Escherichia coli. Proc. Natl. Acad. Sci. USA 85: 3039-3043.

    Article  PubMed  CAS  Google Scholar 

  • Samson, L. and Cairns, J. (1977) A new pathway for DNA repair in Escherichia coli. Nature 267: 281-282.

    Article  PubMed  CAS  Google Scholar 

  • Samson, L. (1992) The suicidal DNA repair methyltransferases of microbes. Mol. Microbiol. 6 (7): 825-831.

    Article  PubMed  CAS  Google Scholar 

  • Santerre, A. and Britt, A.B. (1994) Cloning of a 3-methyladenine-DNA glycosylase from Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 90: 2240-2244.

    Article  Google Scholar 

  • Saparbaev, M. and Laval, J. (1994) Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylase. Proc. Natl. Acad. Sci. USA 91: 5873-5877.

    Article  PubMed  CAS  Google Scholar 

  • Saparbaev, M., Kleibl, K. and Laval, J. (1995) Escherichia coli, Saccharomyces cerevisiae, rat and human 3-methyladenine DNA glycosylases repair 1, N6 ethanoadenine when present in DNA. Nucl. Acids Res. 23: 3750-3755.

    Article  PubMed  CAS  Google Scholar 

  • Sedgwick, B. (1983) Molecular cloning of a gene which regulates the adaptive response to alkylating agents in Escherichia coli. Mol. Gen. Genet. 191: 466-472.

    Article  PubMed  CAS  Google Scholar 

  • Seeberg, E., Eide, L. and Bjoras, M. (1995) The base excision repair pathway. Trends. Biochem. Sci. 20: 391-397.

    Article  PubMed  CAS  Google Scholar 

  • Singer, B. (1985) In vivo formation and persistence of modified nucleosides resulting from alkylating agents. Environ. Health Persp. 62: 41-48.

    Article  CAS  Google Scholar 

  • Strickland, J.A., Marzilli, L.G., Puckett, J.M. and Doetsch, P.W. (1991) Purification and properties of nuclease, S.P. Biochemistry 30: 9749-9756.

    Article  PubMed  CAS  Google Scholar 

  • Talpaert-Borle, M. (1987) Formation, detection and repair of, A.P. sites. Mutation Res. 181: 45-56.

    PubMed  CAS  Google Scholar 

  • Tano, K., Bhattacharyya, D., Foote, R.S., Mural, R.J. and Mitra, S. (1989) Site-directed mutation of the Escherichia coli ada gene: effects of substitution of methyl acceptor cysteine-321 by histidine in Ada protein. J. Bact. 171: 1535-1543.

    PubMed  CAS  Google Scholar 

  • Tatsuka, M., Ibeanu, G.C., Izumi, T., Narayan, S., Rainana, C.V., Kim, N.K., Kang, W., Roy, G. and Mitra, S. (1995) Structural organization of the mouse DNA repair gene, N-methylpurine-DNA glycosylase. DNA Cell Biol. 14: 37-45.

    Article  PubMed  CAS  Google Scholar 

  • Teo, I., Sedgwick, B., Demple, B., Li, B. and Lindahl, T. (1984) Induction of resistance to alkylating agents in E. coli: The ada+ gene product serves both as a regulatory protein and as an enzyme for repair of mutagenic damage. EMBO J 3: 2151-2157.

    PubMed  CAS  Google Scholar 

  • Teo, I., Sedgwick, B., Kilpatrick, M.W., McCarthy, T.V. and Lindahl, T. (1986) The intracellular signal for induction of resistance to alkylating agents in E. coli. Cell 45: 315-324.

    CAS  Google Scholar 

  • Tsuzuki, T., Sakumi, K., Shiraishi, A., Kawate, H., Igarashi, H., Iwakuma, T., Tominaga, Y., Zhang, S., Shimizu, S., Ishikawa, T., Nakamura, K., Nakao, K., Katsuki, M. and Sekiguchi, M. (1996) Targeted disruption of the DNA repair methyltransferase gene renders mice hypersensitive to alkylating agent. Carcinogenesis 17: 1215-1220.

    Article  PubMed  CAS  Google Scholar 

  • Zak, P., Kleibl, K. and Laval, F. (1994) Repair of O6-methylguanine and O4-methylthymine by the human and rat O6-methylguanine-DNA methyltransferases. J. Biol. Chem. 269: 730-733.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Narosa Publishing House, New Delhi, India

About this chapter

Cite this chapter

Sharma, V.L., Sobti, R.C. (2002). Cytogenetics of Lepidopteran Insects. In: Sobit, R.C., Obe, G., Athwal, R.S. (eds) Some Aspects of Chromosome Structure and Functions. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0334-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0334-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7057-4

  • Online ISBN: 978-94-010-0334-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics